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AQuick Overview of Bitcoin

What is Bitcoin?

▶ A monetary token, the Bitcoin.
▶ An open and decentralized way to transfer these tokens.
▶ A representation of the history of these transfers: the blockchain:
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τ1, . . . , τ100

hash1 puzzle2

τ101, . . . , τ200

hash2 puzzle3

τ201, . . . , τ300

hash3 puzzle4

τ301, . . . , τ400
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used to make the blockchain tamper-proof .
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▶ A chain of blocks starting at a predefined initial genesis block v .
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▶ Each block holds a list of transactions transferring Bitcoins.

used to make the blockchain tamper-proof .
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What is Bitcoin?

▶ A monetary token, the Bitcoin.
▶ An open and decentralized way to transfer these tokens.
▶ A representation of the history of these transfers: the blockchain:
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hash2 puzzle3

τ201, . . . , τ300

hash3 puzzle4

τ301, . . . , τ400
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Block B1 Block B2 Block B3 Block B4

▶ Each block contains contains a solution to a computational complex puzzle,
used to make the blockchain tamper-proof .
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The Tamper-Proof Design of Bitcoin

Incentive: The creator of a block that is part of the chain gets a reward.

Assumption: A malicious participant P wants to replace τ123 by τ ′
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Assumption: A malicious participant P wants to replace τ123 by τ ′
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Incentive: The creator of a block that is part of the chain gets a reward.

Assumption: A malicious participant P wants to replace τ123 by τ ′

3. Good participants prefer to work on long chains over short chains.
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The Tamper-Proof Design of Bitcoin

Incentive: The creator of a block that is part of the chain gets a reward.

Assumption: A malicious participant P wants to replace τ123 by τ ′

4. Complex puzzles prevent P from easily adding blocks to B′
2
.

More incentives to continue from block B4 than block B′
2
!
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Permissioned Blockchains

Permissioned blockchains have a well-defined set of vetted participants:

the identities of participants is known to all!

▶ é No easy way to change the participants.

▶ é Dozens of participants.

▶ Ë Many thousands of transactions per second with low latencies.

▶ Ë Strong consensus guarantees: no data inconsistencies.

Example: A e-health system managed by a consortium of health-care providers

▶ Each vetted participant manages their own systems (e.g., different software).

▶ Failure of individual participants should not break the system!

▶ Blockchains: federated data management and resilience.

Can be implemented using PBFT-style consensus.
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Permissionless Blockchains

Permissionless blockchains have open membership:
anyone can participate, at any time, for any duration.

▶ Ë Participants are not known and can change.

▶ Ë Thousands of participants.

▶ é Few transactions per second with very high latencies.

▶ é Weak consensus guarantees: data can be inconsistent (forks).

Example: Cryptocurrencies such as Bitcoin and Ethereum

Challenge: Sybil attacks
A single entity can impersonate many participants to gain unfair control over the system.

Requires a consensus protocol that does not rely on identities.
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Distributed Systems

Definition
1

A distributed system is a collection of autonomous computing elements that appears to its

users as a single coherent system.

▶ Autonomous computing elements: nodes, replica, . . . .

▶ Single coherent system: “should behave as a single system”.

▶ Users should see a single system.

▶ Nodes must collaborate to provide that system.

1

M. van Steen & A.S. Tanenbaum, Distributed Systems, 3rd ed., distributed-systems.net, 2017.

distributed-systems.net
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Distributed Systems: Scalability

Single System

(All Data)

Requests

(All Data)

=⇒

European Node

(European Data)

American Node

(American Data)

(coordination)

Requests

(Mixed Data)

Requests

(European Data)

Requests

(American Data)

Single system: Storage and performance bounded by hardware.

Potentially lower latencies if data ends up closer to users.
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Distributed Systems: Scalability

Single System

(All Data)

Requests

(All Data)

=⇒

European Node

(European Data)

American Node

(American Data)

(coordination)

Requests

(Mixed Data)

Requests

(European Data)

Requests

(American Data)

Complex requests: become more costly to answer!

Potentially lower latencies if data ends up closer to users.
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Distributed Systems: Specialization

Single System

(All Data)

Requests

(Reads, Writes)

=⇒

Storage System

(All Data)

Requests

(Updates)

Compute Systems

(Copy of Relevant Data)

(Read-only Workloads)

Analytics

Machine

Learning

Website

Front-End

updates

update

Single system: Compromise—cannot be optimized for all tasks.

Specialized hardware and software per task.
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Single System

(All Data)

Requests
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Storage System

(All Data)

Requests

(Updates)

Compute Systems

(Copy of Relevant Data)

(Read-only Workloads)

Analytics

Machine

Learning

Website

Front-End

updates

update

Added cost: Keeping the compute systems up-to-date.

Specialized hardware and software per task.
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Distributed Systems: Specialization

Single System

(All Data)

Requests

(Reads, Writes)

=⇒

Storage System

(All Data)

Requests

(Updates)

Compute Systems

(Copy of Relevant Data)

(Read-only Workloads)

Analytics

Machine

Learning

Website

Front-End

updates

update

Design complexity: Updates from the compute systems?

Specialized hardware and software per task.
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Distributed Systems: Reliability (Primary-Backup)

Single System

(All Data)

Requests

(All Data)

=⇒

Main Node

(All Data)

Failed Node

(All Data)

Backup Node

(All Data)

Primary Node

(All Data)

(coordination)

Write Request

(All Data)

Write Request

(All Data)

Read Requests

(All Data)

Read Requests

(All Data)

Single system: Single point of failure.

Potentially lower latencies & more performance when users read data.
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Changes to data requests: Primary leads, backups follow .

Potentially lower latencies & more performance when users read data.
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Failure: Recovery mechanisms—typically complex .

Potentially lower latencies & more performance when users read data.
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Distributed Systems: Reliability (Decentralized)
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(All Data)
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Changes to data requests: Costly coordinated decision among all active nodes.

Potentially lower latencies & more performance when users read data.
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Distributed Systems: Reliability (Decentralized)

Single System

(All Data)

Requests

(All Data)

=⇒

Left Node

(All Data)

Failed Node

(All Data)

Right Node

(All Data)

(coordination)

Write Requests

(All Data)

Write Request

(All Data)

Read Requests

(All Data)

Read Requests

(All Data)

Failure: Recovery mechanisms—typically easier (or even free).

Potentially lower latencies & more performance when users read data.
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Distributed System?

Search Engine X

All Searches

Broken X

Search Engine Y

All Searches

I perform all my searches on the web with Search Engine X .
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Search Engine X

All Searches

Broken X Search Engine Y

All Searches

Today Search Engine X failed—I remembered the alternative Search Engine Y .
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Do we need Distributed Systems?

Distributed computing is complex
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Increased software complexity is fundamental: Problems become theoretically harder.
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Distributed System Need: Resilience

Consider: a service with a very high SLA (may almost never stop).

Causes of failure

▶ Software failure

Code practices? Regression tests? Independent implementations?

▶ Deployment failure

Deployment testing? Staged deployment?

▶ Hardware failure

Use redundant, hot-swappable hardware? Hot spares?

▶ Network failure

Network redundancy? Remote hot spares?

▶ Datacenter failure

Remote hot spares?

▶ Malicious attacks

Decentralized & independent implementations?

Distributed designs can provide resilience.
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Desirable Properties of a Distributed System

Consider a simple & minimalistic distributed system

Fully-replicated: each node (replica) holds the same data.

The CAP Properties
2

Consistency All replicas have a single up-to-date copy of the data.

(All replicas always have the same date).

Availability All data is always accessible & updateable.

(The system can always provide services to clients).

Partitioning The system can tolerate network partitions.

(The system can cope with network failures).

Theorem

A fully-replicated system can only privide two-out-of-three CAP properties.

2

E. Brewer, CAP Twelve Years Later: How the “Rules” Have Changed , 2012.
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The CAP Theorem: Revisited
2

The CAP Theorem lacks nuance.

Consistency All replicas have a single up-to-date copy of the data.

Nuance: Perfect consistency is a very high bar & will limit performance.

Alternatives: eventual consistency & state convergence.

Availability All data is always accessible & updateable.

Nuance: What about latency?

Alternatives: Read-only mode (e.g., offline mode), flexible response times.

Partitioning The system can tolerate network partitions.

Nuance: For non-mobile systems, partition are rare.

Alternatives: aim at CA & compensation after partition recovery.

There is a huge design space—CAP only covers a tiny part.

2

E. Brewer, CAP Twelve Years Later: How the “Rules” Have Changed , 2012.
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Distributed Databases

Definition
3

Distributed database A collection of multiple, logically interrelated databases

located at the nodes of a distributed system.

Distributed DBMS the software system that manages the distributed database &

makes the distribution transparent to the users

3

M.T. Özsu & P. Valduriez, Principles of Distributed Database Systems, 4th ed., 2020.
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Resilient Systems

Definition

A resilient system is a system that can tolerate failures while

continuously providing service.

▶ Failure: hardware, software, network, malicious attacks, . . . .

Crash fault tolerance versus Byzantine fault tolerance.

▶ Continuous services: No downtime, manual intervention, restarts, . . . .
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Outline of a Blockchain-Based Resilient System

1. Replicas.

2. Holding a ledger of transactions.

3. Clients request new transactions.

4. Transaction agreement via consensus.

5. Append-only updates to ledger.

6. Cryptography.

r1 r2

r3 r4

Clientτ

Assumption: Deterministic execution

The ledger provides consistency :
Good replicas execute the same operations in the same order and get the same results.
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Classifying Resilient Systems

The complexity of operating a resilient system depends on many factors:

Failures. In what ways can replicas fail?

Communication. What assumptions are made on communication?

Authentication. How are messages and their senders identified and verified?
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Failure Models

We say that a replica is

initially crashed if it will never do anything;

crashed if it stops doing anything at some point;

omitting if it can omit coordination steps;

Byzantine if it can behave arbitrary
(e.g., omitting steps, performing the wrong steps.).

Initially crashed

Crashing

Omitting

Byzantine

Both omitting and Byzantine replicas can be malicious:
these replicas can coordinate among themselves in attempts to disrupt the system.
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Communication Models

We say that communication is

synchronous if every message sent will arrive only at its destination,

will do so exactly once within some known delay .
Communication can be modeled in rounds.

asynchronous if messages can be arbitrarily delayed, duplicated, or dropped .
Arbitrary delay: message can arrive out of order .

▶ Synchronous: assume reliable communication, no partitions.

unrealistic

▶ Asynchronous: wost-case assumptions.

complex
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Byzantine Fault Tolerance: Authentication

Problem: Impersonation

Byzantine replicas can act arbitrarily and malicious:

they can try to impersonate many good replicas!

Second Problem: Message corruption

Faulty replicas can corrupt any forwarded messages.
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Byzantine replicas can act arbitrarily and malicious:

they can try to impersonate many good replicas!

Solution: Authenticated communication

If replica q determines that m was sent by replica r then:

▶ m must have been sent by r if r is good; and

▶ m must be sent by some faulty replica if r is faulty.

Faulty replicas can only impersonate each other.

Implementation: message authentication codes (MACs).

(cheap symmetric-key cryptography).
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▶ Each replica r can sign any message m, yielding cert(m, r).

▶ A signed message cert(m, r) is non-forgeable without the help of r.

Faulty replicas can only corrupt messages from each other when forwarding.

Implementation: costly public-key cryptography.
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Notations for Resilient Systems

A resilient system is a system with

▶ A set of n replicas R.

▶ A set of f such replicas F ⊆ R are faulty .
▶ We have nf good (non-faulty) replicas G = R \ F .

▶ Each replica r ∈ R has a unique identifier 0 ≤ id(r) < n.

R: n replicas

F : f faulty replicas

G = R \ F : nf good replicas
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Coordination in Resilient Systems: Consensus

A protocol provides consensus if upon completion of the protocol:

Termination Eventually, each good replica r ∈ G decides on a value v(r).

Liveness

Non-divergence All good replicas decide on the same value.

Safety

Hence, if r1, r2 ∈ G decide v(r1) and v(r2), then v(r1) = v(r2).

Non-triviality In different runs of the protocol, replicas can decide on different values.

r4

r3 ∈ F
r2

r1

Consensus

v

?

v

v

Excludes trivial solutions: e.g., good replicas always deciding a pre-defined value.



24/33

Coordination in Resilient Systems: Consensus

A protocol provides consensus if upon completion of the protocol:

Termination Eventually, each good replica r ∈ G decides on a value v(r).

Liveness

Non-divergence All good replicas decide on the same value.

Safety

Hence, if r1, r2 ∈ G decide v(r1) and v(r2), then v(r1) = v(r2).

Non-triviality In different runs of the protocol, replicas can decide on different values.

r4

r3 ∈ F
r2

r1

Consensus

v

?

v

v

Excludes trivial solutions: e.g., good replicas always deciding a pre-defined value.



24/33

Coordination in Resilient Systems: Consensus

A protocol provides consensus if upon completion of the protocol:

Termination Eventually, each good replica r ∈ G decides on a value v(r). Liveness

Non-divergence All good replicas decide on the same value. Safety
Hence, if r1, r2 ∈ G decide v(r1) and v(r2), then v(r1) = v(r2).

Non-triviality In different runs of the protocol, replicas can decide on different values.

r4

r3 ∈ F
r2

r1

Consensus

v

?

v

v

Excludes trivial solutions: e.g., good replicas always deciding a pre-defined value.



25/33

Consensus: From Formalization to Practice

Formal consensus is abstract : Where do the decided values come from?

Towards consensus in practice

Expand non-triviality by putting application-specific requirements on decided values.

Example: System processing client transactions

Decided-upon values that are not-yet executed client-requested transactions.
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Coordination in Resilient Systems: Interactive Consistency

Assumption: Each replica r holds an initial value v(r)
A protocol provides interactive consistency if upon completion of the protocol:

Termination Eventually, each good replica r ∈ G decides on a list L(r) of n values.

Non-divergence All good replicas decide on the same list.

Hence, if r1, r2 ∈ G decide L(r1) and L(r2), then L(r1) = L(r2).

Dependence Let r ∈ G. Good replicas will have v(r) as the id(r)-th list value.

Hence, if replica q ∈ G decided on L(q), then L(q)[id(r)] = v(r).

r4

r3 ∈ F
r2

r1

v4

v3

v2

v1

Interactive

consistency

[v1, v2,é, v4]

?

[v1, v2,é, v4]

[v1, v2,é, v4]
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From Interactive Consistency to Consensus

Example: System processing client transactions

1. Each r ∈ G chooses as v(r) a new client transaction.

2. All replicas participate in interactive consistency .

Each good replica obtains the same list L of n values.

3. At least nf = n− f values in L are valid new client transactions.
4. Good replicas use a deterministic method to choose a valid transaction from L. E.g.,

▶ the first valid transaction in L; or
▶ all valid transactions in L (optimization).
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Coordination in Resilient Systems: Byzantine Broadcast

Assumption: Some replica g holds an initial value w
A protocol provides byzantine broadcast if upon completion of the protocol:

Termination Eventually, each good replica r ∈ G decides on a value v(r).

Non-divergence All good replicas decide on the same value.

Hence, if r1, r2 ∈ G decide v(r1) and v(r2), then v(r1) = v(r2).

Dependence If g is good, then good replicas decide w .
Hence, if g ∈ G and q ∈ G, then v(q) = w .

r4

r3 ∈ F
r2

r1

g w

Broadcast

v ′
?

v ′
v ′
v ′

(v ′ = w if g ∈ G)
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From Byzantine Broadcasts to Interactive Consistency

Assumption: Each replica r holds an initial value v(r)

1. Each replica r performs Byzantine broadcast of v(r).

2. What about faulty replicas? They might not broadcast!

3. Each good replica q ∈ R constructs L(q) = [v0, . . . , vn−1]
in which vi , 0 ≤ i < n, is the value broadcasted by the i-th replica.

Interactive consistency and Byzantine broadcasts solve the same problem.

Both can be used to provide practical consensus.
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On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > fn > f
n > 2f

Impossible



30/33

On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > fn > f
n > 2f

Impossible



30/33

On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > fn > f
n > 2f

Impossible



30/33

On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f

n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > fn > f
n > 2f

Impossible



30/33

On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f

Impossible
4

n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > fn > f
n > 2f

Impossible

4

The FLP Impossibility Theorem.



30/33

On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f

Impossible
4

n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > fn > f
n > 2f

Impossible

4

The FLP Impossibility Theorem.



30/33

On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f

Impossible
4

n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > fn > f
n > 2f

Impossible

4

The FLP Impossibility Theorem.



30/33

On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f

Impossible
4

n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > fn > f
n > 2f

Impossible

4

The FLP Impossibility Theorem.



30/33

On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f

Impossible
4

n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > fn > f
n > 2f

Impossible

4

The FLP Impossibility Theorem.



30/33

On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f

Impossible
4

n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > f

n > f
n > 2f

Impossible

4

The FLP Impossibility Theorem.



30/33

On the Complexity of Consensus

Consider a system with n replicas of which f are faulty.

The consensus problem (informal)

Can the good replicas reach agreement on a value?

Synchronous

Asynchronous

Initially

Crashed

Crashed Omitting Byzantine Byzantine

(with MACs)

Byzantine

(with DSs)

n > f

n > 2f

n > f

Impossible
4

n > f

Impossible

Impossible

Impossible

n > 3f

Impossible

n > f

n > f
n > 2f

Impossible

4

The FLP Impossibility Theorem.



31/33

Consensus in Practice: Impossible?

Theorem (FLP Impossibility Theorem)

The consensus problem cannot be solved for systems that
▶ uses asynchronous communication; and
▶ allows faulty replicas to crash.

Real-world networks: Asynchronous, but mostly well-behaved

Do not solve consensus: weaken the termination guarantee:

Each good replica r ∈ G decides on a value v(r).

Weak termination Good replicas decide when communication is well-behaved .

Probabilistic termination Good replicas decide with high probability .
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On the Complexity of Consensus in Practice

Consider a system with n replicas of which f are faulty.
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The Complexity and Cost of Consensus

Many other limitations on consensus are known

Communication phases a worst-case approach in at-least f + 1 phases;

at-least t + 2 phases if t ≤ f replicas behave faulty (optimistic);

Communication cost an exchange of at-least nf signatures;
an exchange of at least n+ f2 messages;

Network structure at-least 2f + 1 disjoint communication paths

between every pair of replicas.


