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Previously: PBFT
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Central Question

What is the expected performance of PBFT? Motivate!
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On the Performance of Consensus

Consensus throughput Decisions per second made by consensus.

Consensus latency Duration of a single round of consensus.

Resource utilization The cost of consensus (e.g., computational, network bandwidth).

Imbalance in resource utilized by replicas (e.g., primary).

Complexity Complexity of normal-case and of recovery (e.g., view-change).

Failure Model The types of failures consensus can deal with.

Client latency Duration between a client request and the outcome.

▶ Low loads: Function of the consensus latency.

▶ High loads: Function of the consensus throughput.
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Determining the Performance Variables

Number of replicas determines the amount of messages exchanged.

Network bandwidth determines how long it takes to exchange these messages.

Message delay determines how long it takes for sent messages to arrive.

Computational speed determines the speed by which messages are processed.

System processing client transactions

▶ Bottlenecks outside consensus: speed by which replicas execute transactions.
▶ Computational speed typically sufficient when parallelization is used.

Bottleneck in practice: consensus performance in terms of throughput and latency

(as a function of network bandwidth and message delay).
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The Single-Round Cost of PBFT (Sketch)

Assumption: Network bandwidth B = 100MiB/s and delay δ = 15ms

Propose: st = 4048 B each. Prepare and Commit: sm = 256 B each.
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Propose Prepare Commit

0 s

▶ n− 1 messages

▶ st B each

▶ B MiB/s

▶ Last byte arrives after δ

(n− 1)st = 3 · 4048 = 12 144 B

(n−1)st
B + δ = 12144

100·220 + 0.015 ≈ 0.0151 s.

0.0151 s

▶ n− 1 messages

▶ sm B each

▶ B MiB/s

▶ Last byte arrives after δ

(n−1)sm
B + δ = 768

100·220 + 0.015

≈ 0.0150 s.

0.0301 s

▶ n− 1 messages

▶ sm B each

▶ B MiB/s

▶ Last byte arrives after δ

≈ 0.0150 s.

0.0451 s

∆PBFT =

(n− 1)st
B

+ δ +
(n− 1)sm

B
+ δ +

(n− 1)sm
B

+ δ

=
(n− 1)st + 2(n− 1)sm

B
+ 3δ

≈ 3δ (assuming high delay relative to bandwidth).
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Assumption: Network bandwidth B = 100MiB/s and delay δ = 15ms

Propose: st = 4048 B each. Prepare and Commit: sm = 256 B each.

r3

r2

r1

p

c

Propose Prepare Commit

0 s

▶ n− 1 messages

▶ st B each

▶ B MiB/s

▶ Last byte arrives after δ

(n− 1)st = 3 · 4048 = 12 144 B

(n−1)st
B + δ = 12144

100·220 + 0.015 ≈ 0.0151 s.

0.0151 s
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▶ Last byte arrives after δ
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The Throughput of PBFT

Sequential: Next consensus round starts after finishing the current round

TPBFT =
1

∆PBFT

=
B

(n− 1)st + 2(n− 1)sm + 3Bδ
.

Assumption: B = 100MiB/s, st = 4048 B, sm = 256 B
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Implementation techniques for PBFT

Realistic wide-area message delays: 10ms–300ms

The throughput TPBFT of sequential PBFT is impractically low .

Fine-tuning PBFT implementations

Batching many transactions per consensus decision.

Out-of-order processing many consensus decisions at the same time.

Overlapping phases of consecutive rounds.
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Batching Client Requests

The cost of a single round of PBFT

Batching: each decision is onm transactions.

Message Sent by Size

(batch)

Propose Primary st

mst

Prepare Backups sm

sm

Commit All sm

sm

Total: 2n(n− 1) O(stn+ smn2) O(mstn+ smn2)
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The Throughput of PBFT with Batching

Sequential, batching m transactions per consensus round

∆PBFT-m =
m(n− 1)st + 2(n− 1)sm

B
+ 3δ;

TPBFT-m = m
1

∆PBFT-m
.

Assumption: B = 100MiB/s, δ = 15ms, st = 4048 B, sm = 256 B
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Using Batching to Improve Throughput Scalability

Messages (per trans.) Size (per trans.)

PBFT 2n(n− 1) 2n(n− 1) O(stn+ smn2) O(stn+ smn2)

Quadratic
PBFT-n 2n(n− 1) 2(n− 1) O(nstn+ smn2) O(stn+ smn)

Linear

Assumption: B = 100MiB/s, δ = 15ms, st = 4048 B, sm = 256 B
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Resource Utilization of Sequential PBFT

Assumption: n = 4, B = 100MiB/s, δ = 15ms, st = 4048 B, sm = 256 B

∆PBFT =
(n− 1)st + 2(n− 1)sm

B

︸ ︷︷ ︸
message transfer

≈ 0.1ms

+ 3δ

︸︷︷︸
waiting
45.0ms

≈ 45.1ms.
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Problem: Resource Utilization of PBFT

▶ Typically less than 5% bandwidth utilization at primary.

▶ With huge batches still less than 40% bandwidth utilization at primary.

To maximize throughput: use all bandwidth at the primary.

Out-of-order processing

Primary can proposes future rounds before current rounds are finished.

Practical challenges

▶ Memory usage: replicas maintain meta-data for each active round.
▶ Byzantine behavior: exhaust the set of round numbers.

Limit proposals to an active window of valid rounds.

E.g., only proposals in 1000 rounds after the last finished round.



12/27

Problem: Resource Utilization of PBFT

▶ Typically less than 5% bandwidth utilization at primary.

▶ With huge batches still less than 40% bandwidth utilization at primary.

To maximize throughput: use all bandwidth at the primary.

Out-of-order processing

Primary can proposes future rounds before current rounds are finished.

Practical challenges

▶ Memory usage: replicas maintain meta-data for each active round.
▶ Byzantine behavior: exhaust the set of round numbers.

Limit proposals to an active window of valid rounds.

E.g., only proposals in 1000 rounds after the last finished round.



12/27

Problem: Resource Utilization of PBFT

▶ Typically less than 5% bandwidth utilization at primary.

▶ With huge batches still less than 40% bandwidth utilization at primary.

To maximize throughput: use all bandwidth at the primary.

Out-of-order processing

Primary can proposes future rounds before current rounds are finished.

Practical challenges

▶ Memory usage: replicas maintain meta-data for each active round.
▶ Byzantine behavior: exhaust the set of round numbers.

Limit proposals to an active window of valid rounds.

E.g., only proposals in 1000 rounds after the last finished round.



12/27

Problem: Resource Utilization of PBFT

▶ Typically less than 5% bandwidth utilization at primary.

▶ With huge batches still less than 40% bandwidth utilization at primary.

To maximize throughput: use all bandwidth at the primary.

Out-of-order processing

Primary can proposes future rounds before current rounds are finished.

Practical challenges

▶ Memory usage: replicas maintain meta-data for each active round.
▶ Byzantine behavior: exhaust the set of round numbers.

Limit proposals to an active window of valid rounds.

E.g., only proposals in 1000 rounds after the last finished round.



12/27

Problem: Resource Utilization of PBFT

▶ Typically less than 5% bandwidth utilization at primary.

▶ With huge batches still less than 40% bandwidth utilization at primary.

To maximize throughput: use all bandwidth at the primary.

Out-of-order processing

Primary can proposes future rounds before current rounds are finished.

Practical challenges

▶ Memory usage: replicas maintain meta-data for each active round.
▶ Byzantine behavior: exhaust the set of round numbers.

Limit proposals to an active window of valid rounds.

E.g., only proposals in 1000 rounds after the last finished round.



13/27

The Single-Round Cost of PBFT (revised)

Assumption: Primary does most work (st > sm)

r3

r2

r1

p

c

Propose Prepare Commit

▶ Send n− 1 messages

▶ st B each

▶ Receive n− 1 messages

▶ sm B each

▶ Send and receive n− 1 messages

▶ sm B each

(n− 1)st + (n− 1)sm + 2(n− 1)sm = (n− 1)(st + 3sm) B/round.
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The Out-of-Order Throughput of PBFT
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Overlapping Communication Phases

Out-of-order processing is complex to implement.

Consider a backup replica r.

▶ Last step of round ρ: Commit messages.

▶ First step of round ρ+ 1: Prepare messages.

Idea: Overlapping communication phases

Merge Commit message of ρ with the Prepare message of ρ+ 1.

▶ Make proposal of round ρ+ 1 refer to round ρ.

▶ Prepare for round ρ+ 1 implies Commit for round ρ.

▶ Primary proposes round ρ+ 1 after it finished the prepare-phase for round ρ.

Implies strict consecutive processing of rounds

Overlapping cannot be combined with out-of-order processing!
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The Single-Round Cost of PBFT with Overlapping
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Implementation techniques for PBFT: Summary

Batching introduces very high round latencies.

Out-of-order processing has high implementation complexity.

Overlapping only provides limited gains.

Assumption: n = 4, B = 100MiB/s, δ = 15ms, st = 4048 B, sm = 256 B
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Primary-backup Consensus Beyond PBFT

A PBFT-like design is at the basis of many consensus protocols.

Technologies employed by PBFT-like consensus

Threshold signatures eliminate quadratic all-to-all communication.

Speculative execution execute before strong recovery guarantees are met.

Optimistic execution fully optimize for when the primary is correct.

Trusted components use hardware components that cannot behave Byzantine.

Here, we will only cover threshold signatures.
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All-to-All Communication in PBFT

r3

r2

r1

p

c

Propose Prepare Commit

Almost All-to-All:

(n− 1)2 messages

All-to-All:

n2 − n messagesn2 + (n− 1)2 − n messages of constant size

Challenge: Reduce communication from O(n2) to O(n) messages of constant size.
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Tackling All-to-All via All-to-one-to-All Aggregation

Consider the commit phase

Commit

n2 − n messages

=⇒

All-to-One:

(n− 1) messages

mA

One-to-All:

(n− 1) messages

(n− 1) messages of constant size

(n− 1) messages of size O(n− f)

Idea: All replicas send to one aggregator that then sends to all replicas.

Effectively reduced communication from O(n2) to O(n(n− f)).
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Improving Aggregation with Threshold Signatures

Problem: An aggregated message of size c will have size O(c(n− f)).
▶ We have identical Commit messages from at-least n− f replicas.
▶ Goal: aggregate these into a single message of size O(c) instead of O(c(n− f)).

▶ Crucially: we want to aggregate the digital signatures!

Solution: Using a n : f-threshold-signature scheme with public key K

▶ Each replica has a unique private key.

▶ Replicas can produce partial signatures for value v using their private key.
▶ Using n− f partial signatures for v , one can produce a threshold signature.

Threshold signatures aggregate n− f distinct signatures into a single constant-sized value.



21/27

Improving Aggregation with Threshold Signatures

Problem: An aggregated message of size c will have size O(c(n− f)).
▶ We have identical Commit messages from at-least n− f replicas.
▶ Goal: aggregate these into a single message of size O(c) instead of O(c(n− f)).
▶ Crucially: we want to aggregate the digital signatures!

Solution: Using a n : f-threshold-signature scheme with public key K

▶ Each replica has a unique private key.

▶ Replicas can produce partial signatures for value v using their private key.
▶ Using n− f partial signatures for v , one can produce a threshold signature.

Threshold signatures aggregate n− f distinct signatures into a single constant-sized value.



21/27

Improving Aggregation with Threshold Signatures

Problem: An aggregated message of size c will have size O(c(n− f)).
▶ We have identical Commit messages from at-least n− f replicas.
▶ Goal: aggregate these into a single message of size O(c) instead of O(c(n− f)).
▶ Crucially: we want to aggregate the digital signatures!

Solution: Using a n : f-threshold-signature scheme with public key K

▶ Each replica has a unique private key.

▶ Replicas can produce partial signatures for value v using their private key.
▶ Using n− f partial signatures for v , one can produce a threshold signature.

Threshold signatures aggregate n− f distinct signatures into a single constant-sized value.



21/27

Improving Aggregation with Threshold Signatures

Problem: An aggregated message of size c will have size O(c(n− f)).
▶ We have identical Commit messages from at-least n− f replicas.
▶ Goal: aggregate these into a single message of size O(c) instead of O(c(n− f)).
▶ Crucially: we want to aggregate the digital signatures!

Solution: Using a n : f-threshold-signature scheme with public key K

▶ Each replica has a unique private key.

▶ Replicas can produce partial signatures for value v using their private key.
▶ Using n− f partial signatures for v , one can produce a threshold signature.

Threshold signatures aggregate n− f distinct signatures into a single constant-sized value.



21/27

Improving Aggregation with Threshold Signatures

Problem: An aggregated message of size c will have size O(c(n− f)).
▶ We have identical Commit messages from at-least n− f replicas.
▶ Goal: aggregate these into a single message of size O(c) instead of O(c(n− f)).
▶ Crucially: we want to aggregate the digital signatures!

Solution: Using a n : f-threshold-signature scheme with public key K

▶ Each replica has a unique private key.

▶ Replicas can produce partial signatures for value v using their private key.
▶ Using n− f partial signatures for v , one can produce a threshold signature.

Threshold signatures aggregate n− f distinct signatures into a single constant-sized value.



22/27

All-to-one-to-All Aggregation with Threshold Signatures

Consider the commit phase

Commit

n2 − n messages

=⇒

All-to-One:

(n− 1) partial signatures
One-to-All:

(n− 1) threshold signatures

(n− 1) partial signatures of constant size
(n− 1) threshold signatures of constant size

Effectively reduced communication from O(n2) to O(n).
Similar change can be made to the prepare phase.
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Using Threshold Signatures in PBFT

▶ Both prepare and commit phase: from 2(n− 1)2 to 4(n− 1) messages.

▶ Consensus from three to five rounds: higher consensus and client latencies.

▶ High computational cost for the aggregrator.
▶ Need recovery methods to deal with faulty aggregators.

Assumption: B = 100MiB/s, st = 4048 B, sm = 256 B
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▶ Both prepare and commit phase: from 2(n− 1)2 to 4(n− 1) messages.

▶ Consensus from three to five rounds: higher consensus and client latencies.

▶ High computational cost for the aggregrator.
▶ Need recovery methods to deal with faulty aggregators.

Assumption: B = 100MiB/s, st = 4048 B, sm = 256 B
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Limitations of Primary-Backup Consensus
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Total: m(n− 1)st + 3(n− 1)sm.

Backup Send (n− 1) Prepare, send (n− 1) Commit.

Receive one Propose, receive (n− 2) Prepare, receive (n− 1) Commit.
Total: mst + 4(n− 1)sm − sm.
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Limitations of Primary-Backup Consensus

Bandwidth ratio between primary and backups

RPBFT-m =
m(n− 1)st + 3(n− 1)sm
mst + 4(n− 1)sm − sm

.

Assumption: st = 4048 B, sm = 256 B
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Maximum Throughput of Primary-Backup Consensus

Consider failure-free replication: Primary only proposes, no other communication.

Tmax =
B

(n− 1)st
.

Assumption: B = 100MiB/s, st = 4048 B, sm = 256 B

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

·103

Number of Replicas

T
h
r
o
u
g
h
p
u
t
(
r
o
u
n
d
/s
) Tmax



25/27

Maximum Throughput of Primary-Backup Consensus

Consider failure-free replication: Primary only proposes, no other communication.

Tmax =
B

(n− 1)st
.

Assumption: B = 100MiB/s, st = 4048 B, sm = 256 B

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

·103

Number of Replicas

T
h
r
o
u
g
h
p
u
t
(
r
o
u
n
d
/s
) Tmax



25/27

Maximum Throughput of Primary-Backup Consensus

Consider failure-free replication: Primary only proposes, no other communication.

Tmax =
B

(n− 1)st
.

Assumption: B = 100MiB/s, st = 4048 B, sm = 256 B

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

·103

Number of Replicas

T
h
r
o
u
g
h
p
u
t
(
r
o
u
n
d
/s
) Tmax



25/27

Maximum Throughput of Primary-Backup Consensus

Consider failure-free replication: Primary only proposes, no other communication.

Tmax =
B

(n− 1)st
.

Assumption: B = 100MiB/s, st = 4048 B, sm = 256 B

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

·103

Number of Replicas

T
h
r
o
u
g
h
p
u
t
(
r
o
u
n
d
/s
) Tmax

TPBFT



25/27

Maximum Throughput of Primary-Backup Consensus

Consider failure-free replication: Primary only proposes, no other communication.

Tmax =
B

(n− 1)st
.

Assumption: B = 100MiB/s, st = 4048 B, sm = 256 B

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

·103

Number of Replicas

T
h
r
o
u
g
h
p
u
t
(
r
o
u
n
d
/s
) Tmax

TPBFT
Tooo-PBFT



25/27

Maximum Throughput of Primary-Backup Consensus

Consider failure-free replication: Primary only proposes, no other communication.

Tmax =
B

(n− 1)st
.

Assumption: B = 100MiB/s, st = 4048 B, sm = 256 B

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

·103

Number of Replicas

T
h
r
o
u
g
h
p
u
t
(
r
o
u
n
d
/s
) Tmax

TPBFT
Tooo-PBFT
Tooo-PBFT-256



26/27

Concurrent Consensus

Idea: Multiple instances of PBFT, each with a distinct primary

1 ≤ z ≤ n primaries: z simultaneous rounds of consensus that decide the next z requests.
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Consider the communication of one of the z primaries.
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