An In-Depth Look of BFT Consensus
in Blockchain: Challenges and

Opportunities
(System)
Suyash Gupta, Jelle Hellings, @ € 7 N
xpol
Sajjad Rahnama, Mohammad Sadoghi Cmtivfy%ﬂ S?@d Gj ResilientDB

X iy = :/
N\ E
= NIVERSITY OF CALIFORNIA

Agenda

Session I

1) Blockchain 101
1) What is Blockchain, Applications and Components?
2) Permissionless and Permissioned Blockchain.

2) Transactions and Consensus
3) Primer on Byzantine Fault-Tolerant Consensus

4) Existing Optimizations for BFT Consensus.

Session II

1) PoE: Two-Phases Resilient Consensus.

2) MultiBFT: Parallel and Wait-free Consensus
3) GeoBFT: Global Scale Consensus

4) Reducing Communication between Clusters

Hands-on ResilientDB

/ Qrcsicnts Bexpotad 2
Creativity Unfolded

What is Blockchain?

* A linked list of blocks.

 Each block contains hash of the previous block.

* A block contains information about some client transactions.

Previous
Hash

Previous
Hash

° A

Data

Data

New
Block

Previous
Hash

-

Client Transactions

G] ResilientDB @ Expolab 3
Creativity Unfolded

Why Blockchain?

_WIIY;’SIIIIIIIII ONE PERSON MANAGE ALL THE DATA

Qmocracy 0
ecentralization
Authentication

A~

By User:Pedant, User:Wapcaplet, User:Antonu, User:Vanderlindenma, User:.js. - Composition of File:Barnstar of Diligence Hires.png + File:Voting hand.svg., CC BY-SA 3.0,] ope
https://commons.wikimedia.org/w/index.php?curid=45960536 ReSllleﬂtDB EXPOLab 4
Creativity Unfolded

https://blog.devolutions.net/2017/10/whats-the-difference-between-2fa-and-mfa

GIVE EV_EIQVYIIHE A RIGHT TO MAKE DECISIONS {

https://commons.wikimedia.org/w/index.php%3Fcurid=45960536

Blockchain Applications?

Cryptocurrency 9
&

Blockchain
Technology

ﬁ Land registry

@ Ownership & digital rights
ﬁ Identity
Q IP rights

\
@ ResilientDB Expolab

Jacobsen et al., Blockchain Landscape and AI Renaissance: The Bright Path Forward. Middleware (Tutorials) 2018: 2:1 Creativity Unfolded

Supply
chains

Components of a Blockchain System

* Replicas - Store all the data.
* Client = Sends transactions to process. BI.{(O("EKj CHAIN
 Consensus Protocol - Helps ordering transactions.

* Cryptographic Constructs = Authenticate replicas and clients.

* Ledger = Records transactions.

/ GJ ResilientDB @ Expolab 6
Creativity Unfolded

. https://medium.com/@blake_hall

Consensus

L3 JResiliento® @ Expolab 7
Creativity Unfolded

Types of Blockchain Systems

* Permissionless = Open Access
* Anyone can participate.
* Identities of the replicas unknown.

* Applications include crypto-currency and money exchange.

* Permissioned -> Restricted Access

* Only a selected group of replicas, although untrusted can participate.
* Identities of the replica known a priori.

* Applications include health-care and energy trading.

/ Q¢ ResilientDB @EXPOLab

BITCOIN

* First Crypto-currency - a monetary application.
* Uses Nakamoto consensus > Proof-of-Work beneath the skin.

* Supports permissionless access.

* Requires solving hard cryptographic puzzles.
* Any replica that wants to create a new block proves that it did solve the puzzle.

* Difficulty of the puzzle helps prevent malicious attacks.

/ Qrcsiens Bexpotod 5
Creativity Unfolded

* By Ma.prezentalok - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68898918

ETHEREUM

* Another Crypto-currency - a token used in variety of applications.

Uses Proof-of-Work but plans to start using Proof-of-Stake.
* Supports permissionless access.

* Allows programmers to design their transactions or “smart contracts”.

Hard dependency on Ethereum Virtual machine (EVM).

* Envisions design of Permissioned applications.

e —

/ B ResilientDB @ExpoLab 10
. -0, Creativity Unfolded

By Ethereum Foundation - https://camo.githubusercontent.com/1b3d0063d6a8bcdS6ca07b0ea2ef0f71b17a0fa8/687474703a212£7376677061726e2e63616d2f6c6f6761732f657468657265756d2¢737667, CC BY 3
https://commons.wikimedia.org/w/index.php?curid=52278619

: - : . COINTELEGRAPH BTC ETH XRP BCH LTC
€he New Pork Eimes @ T e V$7424 $152 $022 $216 $47.99

T'errorists Turn to Bitcoin for Newsv Featuresv Price Analysisv Market Tools v~ Cryptopediav Industry v
Funding, and They’re Learning Fast

:® Ledger It's Black Friday all week! 30% off sitew

Tia Binance says more than $40 million
in bitcoin stolenin ‘large scale’
hack Bitcoin Cash Hard Fork Sees Miners
e Zack Whittaker, Catherine Shu / 6:10 pm PDT * May 7, 2019 E] Comment 'waSte, Money on 14 Invalid BIOCks

Disrupt Berlin 2019 " coindesk

H v : TECH REVIEWS SCIENCE CREATORS ENTERTAINMENT VIDED FEAT Bitcoin 24h Ethereum 24h XRP 24h

Story from Tech —>

REPORT TECH CYBERSECURITY

Why the Ethereum Classic hack is a bad Bitcoin Cash Miners

.
omen for the blockchain Undo Attacker’s
The 51 percent attack is real, and it's easier than ever Tra nsaCtlons Wlth '51 %

By Russell Brandom | Jan 9, 2019, 8:47am EST Aﬂa c k'

/ \ May 24, 2019 at 21:177 UTC = Updated May 25, 2019 at 10:39 UTC
(QJResitientos (SHExpolab 1

Permissioned Blockchain Systems

* Require identities of the participating replicas to be known a priori.

* Replicas still untrusted = Consensus through traditional BFT protocols.

« Computationally in-expensive. ' ‘
e Communication intensive. ‘ .

* Prevent chain forks.

* Suitable for needs of an industry - JP Morgan, IBM, Oracle

 Advent path for Blockchain Databases.

/ Qrcsicnts Bexpotad 1
Creativity Unfolded

a7 N

000&

Transactions, Agreement and Consensus

(JResitients @ExpoLab 13
Creativity Unfolded

The Omniscient Transaction

* A transformation from a consistent state to another consistent state.
* A contract between two or more parties.
* A collection of Read or Write operations.

 Types of transactions: nested, compensating, multi-operation etc.

/ Q‘Resi[i,entDB @EXPOLab 14

ACID Properties

« Atomicity: A transaction either completes fully or none of its changes take place.

* Consistency: The transaction must obey legal protocols

* Isolation: The intermediate state of a transaction is invisible to other transactions

* Durability: Once a transaction is committed, it cannot be abrogated/ .
\

/ L3 JResitientOB (S4Expolab 15

U G

(T,

Consistency vs Availability

* An ongoing struggle that causes performance tradeoffs.

* Availability - Database needs to be always available for use.
* Solution? Replication

 [ssues? Faults, Failures and Attacks.

* Consistency > Database needs to be correct.

¢ Solution? All replicas should have same state.

* Issues? Expensive.

== : \
/ @ ResilientDB @ EXPOLab 16
. Creativity Unfolded

By Ryan Child - http://www.navy.mil/view_image.asp?id=24509, Public Domain, https://commons.wikimedia.org/w/index.php?curid=182472

Partitioning vs Replicating

* Distributed Databases can be partitioned, replicated or both.

O O O
* Partitioning -> Split database into multiple disjoint partitions. (ﬁ m
* Replication -2 Multiple full copies of the database. J-L

* Partitioned Replication -2 Multiple partitions, where each partition employs

replication.
PV

A

/ | (3 JResilientDB (&Y Expolab

Agreement in Partitioned Databases

* Partitioned Databases receive client transactions that may access multiple partitions.

* Deciding the fate of multi-partition transactions requires coordination among the

partitions.
* Coordination is costly but necessary.

« Coordination or agreement among the partitions should be both safe and live.

/ ResilientDB @ EXPOLab

N7

18

A Deep Dive into BFT Consensus
(Theory Slides Continue)

@ EXPOLab @ResilientDB
Creativity Unfolded
— s — / UCDAVIS
= — 7 — = UNIVERSITY OF CALIFORNIA

@ ResilientDB ExpoLab
CCCCC tvity Unfolded

Modern BFT Consensus Optimizations

@ ResilientDB

Expolab

Creativity Unfolded

UCDAVIS

UNIVERSITY OF CALIFORNIA

@ResilientDB @ ExpoLab
Creativity Unfolded

PBFT: Practical Byzantine Fault Tolerance

* First practical Byzantine Fault Tolerant Protocol.

* Tolerates up to f failure out of 3f+1 replicas

 Three phases of which two require quadratic communication complexit.

* Safety is always guaranteed and Liveness is guaranteed in periods of partial synchrony:.

* View-Change protocol for replacing malicious primary

Creativity Unfolded

PBFT Failure-Free Flow

Client
T

Primary @ \ = /
Replica1 @ \
Replica2 -@
Byzantine -@ \

Replica Client Pre-Prepare Prepare Commit Reply

Request O(n) O(n?) O(n?)

/ e —

L3 JResitientOB @ExpoLab 22
Creativity Unfolded

PBFT Primary Failure (View Change)

New Primary /\
Replica 1
Replica 2 / \\,

Byzantine Primary -@ \

View Change yiew Change New View Enter New View
Message Acks Message

/ (3 HResilientDB @ExpoLab 23

All about Eve: Execute-Verify Replication
for Multi-Core Servers [OSDI'12]

* New Architecture: Execute/verify instead of Agree/Execute.

* Execute multiple requests concurrently and then verify the output.
 Takes advantage of parallel hardware to improve performance.

* Non-deterministic multi-threaded execution

* The Byzantine agreement is on the output instead ot sequence.

* Allows divergence in execute and roll back in case

/ Q‘ResilientDB @EXPOLab

24

Eve’s Execute-Verity Flow

Client %

Primary o //
Replical @
Replica2 @
Y
Replica3 @ L
P Client Batching\/ Send Prepare Commit Reply
Request ¢ Execution Roll back
" Token
Execution happens ‘ PBFT phases

before consensus

/ e ——

3 JResilientD8 @Expotab 25
Creativity Unfolded

Zyzzyva: Speculative Byzantine Fault Tolerance
[SOSP’07]

* Employs Speculation to achieve consensus in a single phase.

* In the best case (no failures), it only requires linear communication complexity.
* Depends on its good clients, for achieving common order among the replicas.

* Client needs identical response from all the 3f+1 replicas.

» With just one crash fault it faces severe throughput degradation.

* Recently, proven unsafe.

/ ResilientDB @EXPOLab 26

N7

Zyzzyva Failure-Free Flow

Client needs

Client f\ """"""" " 3f+1 responses
ien n 7

Primary -@ ///
Replica 1 " \\‘/ //
Replica 2 -@ N4

Replica 3 @

Client Pre-prepare \/ Reply
Request E

\/
— Speculative Execution
/ L 3JResilientD8 @ExpoLab 27
Creativity Unfolded

Zyzzyva Flow with the Failure
of One Non-Primary Replica

Client
Timeouts

Client -~
Primary @ \\
Replica 1 @ / \/
Replica 2 @ \\/ \\/
Byzantine Replica @ \

Client Pre-prepare Reply Comrmt Certificate
Request Certificate Reply

/ e —

3 JResilientD8 @Expotab 28
Creativity Unfolded

New Primary

Replical @

/‘

Byzantine Primary -@

Replica 2

Zyzzyva View Change Protocol

N\

il

DN

N

I Hate Join after View Change New View New View Enter

—

Primary Receiving
f+1 IHP
\

Messages

Propose

Confirmation New View

DS A

ResilientD8 @ Expolab

29

RBFT: Redundant Byzantine Fault Tolerance
[ICDCS"13]

* Robust BFT protocol, perform well in the presence of smart malicious primary.
* Runs f+1 instance of BFT protocol to monitor best performance .

* Do not rely on one specific primary.

* One Master primary and f backup instance of protocol always being executed.

 Goal: replicas monitor the throughput of the primary and replace it with one

of the backups when it is slow to achieve robustness

/ JResilientDB @EXPOLab 30

N

RBFT’s Multiple Redundant Primary Design

Node1l Node?2 Node 3 Node 4 Node 5 Node 6 Node 7

BFT Instance 1 Primary Replica Replica Replica Replica Replica Replica

BFT Instance 2 Replica Primary Replica Replica Replica Replica Replica

Replica Primary Replica Replica Replica Replica

BFT Instance 3 Replica

n=7 replicas, f=1 and f+1=3 instances

/> @Resilientos @ Expolab
Creativity Unfolded

31

Client
Replica 0
Replica 1

Replica 2

Replica 3

/ . PBFTphases

RBFT Failure-Free Flow

f+1 instances

L
AN /]
/
N g ¥ /
\ /
*® y /
@ 3
Client Propagate Pre-Prepare Prepare Commit Reply
Request :

DS A

ResilientD8 @ Expolab

32

Hotstuff: BFT Consensus in the Lens of Blockchain
[PODC’19]

» Splits each O(n?) phase of PBFT into two linear phases.
* Changes leader at the end of each consensus.
* Employs expensive threshold signatures to linearize consensus.

* Two versions:

 Basic Hotstuff: Unfolding each phase of PBFT into two round and make it linear.

* Chained Hotstuff: Pipelined version of basic one, each phase different role for different view.

/ L3 JResitigqtos &Y Expolab

Hotstuff Protocol Flow

If - %\/WN
N A RN NN ZE RN RN
o 7 N i I i

Replica View Proposal Prepare Pre-commit Pre-commit Commit Commit Decide
change vote Message Vote Message Vote
Prepare Pre-Commit Commit
Phase Phase Phase

/ L3 JResilientDB @ Expolab 34

Attested Append-Only Memory:
Making Adversaries Stick to their Word [SOSP’07]

* Uses a trusted component to reduce the hard-limit of one-third byzantine failures.
* Trusted component removes equivocation = Primary cannot lie about the order.

* A2M = Set of trusted, undeniable, ordered logs.

* Messages in the log can be verified by everyone using attestation.

* Attestation overheads: log writing, veritying.

/ ResilientD8 (@Y Expolab 35

DS A

Attested Append-Only Memory
A2M-PBFT-E
* Protecting the execution by adding attestation to client reply
* Safety and liveness when f<n/3

* Just Safety when f <n/2

A2M-PBFT-EA
* Append all messages to the A2M Log
* Protect Execution and Agreement with log

* Safety and liveness when f<n/2

/ QL ResilientDB @EXPOLab

Attested Append-Only Memory:
PBFT with Execution Protection

/

Client
Primary
Replica 1 \
Replica 2 \
Byzantine)
Replica Rg;fg:t Pre-Prepare

Prepare

Commit

Reply
(logged)

L3 JResilientDB @ Expolab

37

Attested Append-Only Memory:
Making Adversaries Stick to their Word

Attested Append Only Memory PBFT with Execution and Agreement Protection:

Client

Clj
ng re(]lle
St

Primary

/

Replica 1

Replica 2

N

Byzantine Replica

N

Client Request Pre-Prepare O(n)

/

\

Prepare O(n?)

Commit O(n?) Reply(logged)

JResitientos @ Expolab 38
Creativity Unfolded

Towards Scaling Blockchain Systems via Sharding
[SIGMOD"19]

* Introduces the notion of multiple chains.

 Data is partitioned into shards = Each shard uses 3f+1 replication.
* PBFT within each shard to provide Byzantine Fault-Tolerance.

* Multi-shard transactions require Two-Phase Commit protocol.

» Authors use SGX Trusted Hardware to reduce costs (n =2f+1)

/ JResilientDB @EXPOLab

N

39

Towards Scaling Blockchain Systems via Sharding

S1 Primary
S1 Replica 1

S1 Replica 2

S2 Primary
S2 Replica 1

S2 Replica 2

Pre-Prepare Prepare Commit

Single-shard transactions are fast!

@ResilientDB @ ExpoLab 40
Creativity Unfolded

Towards Scaling Blockchain Systems via Sharding

Multi-shard Transactions need 2PC protocol = Initiated by the Reference Committee.

Reference Committee

Shard 1 " \\
Shard 2 @
Shard 3 -@ \/

w

.

ANN

N

Prepare
transaction

——

\,

Votes

Global
Decision

N7

ResilientDB @ Expolab

41

Monoxide: Scale out Blockchains with Asynchronous
Consensus Zones (NSDI'19)

Apply sharding on public blockchain cryptocurrency with Asynchronous Consensus Zone.

Eventual Atomicity: First withdraw transaction, Later the deposit transaction.

Asynchronous Consensus Zone: Parallel chains in different zones working independently.

Mining power amplification: Chu-ko-nu Mining distributes mining power evenly across zones.

Cross Zone Transactions: broadcasting relay transactions for the inter-zone part of the TXNss.

/ QL ResilientDB @EXPOLab

Monoxide: Scale out Blockchains with Asynchronous
Consensus Zones

Z one 1 —_— Block t+1 Block t+2 Block t+3 Block t+4 Block t+5 Block t+6

Block r+1

Block r+2 Block r+3 Block r+4 Block r+5 Block r+6

Zone 2 —

Relay Transaction

Block 1+1

Block 1+2 Block 1+3 Block 1+4 Block 1+5

Zone 3

Block 1+6

Normal Case with Good Primary and one fault

— \
/ @ ResilientDB @ ExpoLab 43
Creativity Unfolded

Algorand: Scaling Byzantine Agreement for
Cryptocurrencies [SOSP’17]

* Committee Based Consensus: Scalability through consensus among selected users.

* Proof of Stake: Block proposers selected based on their stake.

* Cryptographic Sortition: Committee selection done independently at each node.

* Verifiable Random Function: Takes a secret key and a value and produces a

pseudorandom output, with a proot

e —

——

\

)

Random Number

G] ResilientDB @ €
Crea

xpolab

tivity Unfolded

44

Algorand: Scaling Byzantine Agreement for

Cryptocurrencies
Choose selected block
or empty block
m— Block Proposal —m— Binary Byzantine Agreement
Using VRF Selected members Reduce to one block
. . . . 2 —11 round of
and Gossip will propose blocks to consider using votin
priority &
* Final consensus: consensus is reached and block is accepted

* Tentative consensus: other users may reached tentative Final
consensus on different block, Agreement
* Fixed during recovery process or final block after

— \
/ @ResilientDB @ EXPOLab 45
Creativity Unfolded

SESSION 11

An In-Depth Look of BFT Consensus in
Blockchain: Challenges and Opportunities

@ Expolab @ ResilientDB
Creativity Unfolded

Creativity Unfolded

Requirements of Existing BFT Protocols

1) Require three phases of communication, of which two necessitate quadratic

communication (PBFT).
2) Expect no failures or dependence on clients (Zyzzyva).
3) Incur high client latencies due to many phases of communication (PBFT, HotStuff).
4) Require threshold signatures, which are computationally expensive (HotStutf).
5) Require more than 3f+1 replicas (Q/U, HQ).

6) Need trusted components (AHL, Attested Append-only memory).

/ Q¢ ResilientDB @EXPOLab

Proof-of-Execution (PoE):
Reaching Consensus through Fault-Tolerant Speculation

* Speculative Execution to reduce the client latency.
* Out-of-Order message processing for transactions.
* Two-Phases of communication.

* No Dependence on Clients or requirement of expensive cryptographic primitives.

/ ResilientD8 (¥ Expolab

g

PoE vs Other Protocols

Protocol Phases Messages Computation Resilience Requirements

ZYZZYVA 1 O(n) high 0 reliable clients
PoE (our paper) 2 O(n + n?) low f

PBFT 3 O(n + 2n?) low f

HoTSTUFF 4 O(n+3n%) high f

HoTSTUFF-TS 8 O(4n) very high f threshold sign.

/ QL ResilientDB @EXPOLab

PoE Protocol (Non-Faulty Primary)

Client
Primary -@ //
Replica 1 @ \
Replica 2 @ \
Byzantine Replica @
Client Propose Support Inform
request O(n) O(n?) O(n)

/ L3 JResilientDB @ Expolab 50

PoE View Change Protocol:
Replacing Malicious Primary

New Primary

Replica 1
Replica 2 —g \
Byzantine Primary -@ \ \.
View Change Joinafter View Change New View New View Enter
Request Receiving Acks Propose Acks New View
f+1 VC request

/ ResilientD8 (@Y Expolab 51

DS A

PoE Scalability under Single Failure

80

N
—

Throughput(Kops/s)
=
<

o
=

— -4
4 8 16 32
Number of Replicas

Iy

/ Gj ResilientDB @ Expolab 52
Creativity Unfolded

Scaling Blockchain Databases through Parallel Resilient
Consensus Paradigm

* Why should BFT protocols rely on just one primary replica?
* Malicious primary can throttle the system throughput.

* Malicious primary requires replacement —> fall in throughput.

/ QL ResilientDB @EXPOLab

Multiple Byzantine Fault-Tolerance
(MultiBFT) Paradigm

* Designate multiple replicas as Primaries!

* Run multiple parallel consensuses on each replica.

BFT protocol=»

Number of

Replication

Instances (z)'::)

Create z instances at
each replica and run z
parallel BFT instances.

-

Unification

Execution

Create a global order
of all the requests.

=

Execute the requests
in a global order and
reply to clients.

ResilientDB @ ExpoLab

o

MultiBFT Flow

Create f+1 instances at each

replica Divide clients into f+1 sets.

¥

Mark f+1 replicas as primaries.

Replica 1 primary Instance 1 request to its primary.
Replica 2 primary Instance 2

Each client sends

Replication

Input

input BFT consensus.

Replica f+1 primary Instance f+1 BET protocol
Each primary runs independent /

Y

An instance
replicates its client request.

An 1nstance
requests a view change.

v

Each replica with
new primary

switches to new view.

Execute thread waits for
f+1 instances to

replicate their client requests.

Forward incoming view change
messages to coordinator thread.

Unification

Y

Coordinator thread receives f+/ view
change messages for same primary.

¥

Coordinator waits for each f+1 instance]
to replicate its client request or
f+1 view change messages.

\ 4

A

Coordinator assigns a new primary to each

instance with f+1 view change messages.

Execute thread executes each request in order.
Each instance replies to its client.

Execution

ResilientDB @ExpoLab

Malicious Primaries Collusion

* Multiple malicious primaries can prevent liveness!

* Solution = Optimistic Recovery through State Exchange.

3 ResilientDB w Expolab

Client

AN

//

W

“‘V\'
X

X

V. \V%

X\

ZANNN

AN

/

AR

AN

/

AN

\

o\

T
Primary, 1®
Replica
& N
< N
Replica \\/
2.@
Client X
'\ - /
Primary 1-® \ \
Replica O \
Byzantine 1-® \.
Replica
2-@
Request Pre-Prepare
\

/

MultiBFT using PBFT with 2 parallel instances on each repli¢a

Prepare

Commit

lientDB

@ Expolab 57
Creativity Unfolded

MultiBFT Scalability

30 \
3001

> —=— MULTIZ
— 2501
> —+— MULTIP
5200 —4&— PBFT
= —— ZYZ
=150/
2 —«— HS
S

50 | | .

4) 16 32 46

Number of Replicas

/ GJ ResilientDB @ Expolab 58
Creativity Unfolded

Global Scale Resilient Blockchain Fabric

* Traditional BFT protocols do not scale to geographically large distances.

 Blockchain requires decentralization = replicas can be far apart = expensive

communication!

* The underlying BFT consensus protocol should be topology-aware.

/ QT ResilientDB @ EXPOLab

Vision Geo-Scale Byzantine Fault-Tolerance

Cluster 2
{ client |/ ProposeaBlock GeoBFT ./ Execution : Reil;i:)’::se:
! request | | PR i ; :
' a i (B) ! Consensus Minimal Local H oo i

Communication ~_ Broadcast &
) §

! client i

P Minimal i P oo |
: o — Consensus Communication Br;;d.sd;ast i i Client
~_ | irequest;i B) ! /' Execution /, ResPonse
A ~ GeoBFT o . N s s

N e SO ... ST .

Moo Toofflco| collfles Noolfles Ledger
' Replica | S L
O/ P Ff F & o & & g Execution

- - - . e 5 & L Persistant Data

TS

@ ResilientDB ExpoLab 60

Creativity Unfolded

GeoBFT Protocol

* GeoBFT groups replicas into clusters based on the distance between these replicas.

* Each cluster runs the PBFT consensus protocol, in parallel and independently.

Replication Certification Execution

Each cluster runs PBFT Primary at each cluster Execute the requests

protocol in parallel on j== creates a certificate and =|in a global order and

its client request. sends to f+1 replicas of all reply to clients.
the other clusters.

/ ResilientDB @ EXPOLab

N

Cluster 1
Montreal

Cluster 2
Sydney

GeoBFT Takeaways

* To ensure common ordering = linear communication among the clusters is
required.

* Primary replica at each cluster sends a secure certificate to f+1 replicas of every
other cluster.

 Certificates guarantee common order for execution.

 If primary sends invalid certificates - will be detected as malicious.

/ QL ResilientDB @EXPOLab

GeoBFT Scalability

50
=
= 401 —=— PBFT
% —&— ResDB
E —A— HS
= 30 —— STW
= —a— ZYZ
S
=
=20 —— ' '

10

2 3 4 5 6
Number of Clusters(Regions)

\,

G]ResilientDB @ExpoLab 64
Creativity Unfolded

ResilientDB: High Throughput Yielding,
Scalable Permissioned Blockchain Fabric

Visit at: https://resilientdb.com/

EE! Expolab ResilientDB
Creativft)y Unfolded GJ 1

e —— e =

https://resilientdb.com/

Why Should You Chose ResilientDB?

1) Bitcoin and Ethereum offer low throughputs of 10 txns/s.

2) Existing Permissioned Blockchain Databases still have low

throughputs (20K txns/s).
3) Prior works blame BFT consensus as expensive.
4) System Design is mostly overlooked.

5) ResilientDB adopts well-researched database and system practices.

/ ResilientDB @EXPOLab 66

N7

Dissecting Existing Permissioned Blockchains

1) Single-threaded Monolithic Design
2) Successive Phases of Consensus

3) Integrated Ordering and Execution
4) Strict Ordering

5) Oftf-Chain Memory Management

6) Expensive Cryptographic Practices

/ QT ResilientDB @ EXPOLab

Can a well-crafted system based on a classical BFT
protocol outperform a modern protocol?

—#— ResilientDB
—%-- Zyz7yva

o o
= =2
—] —

[
()
(=]

Throughput (KTxns/s)
® o
; =)

=N
—

A
<

4 8 16 32
Number of Replicas

/ ResilientD8 (@Y Expolab 68

DS A

ResilientDB Architecture

SECURE
LAYER

L

SIGNING
TOOLKIT

BLOCKCHAIN (QJresiienve (SAexpolab

ResilientDB Multi-Threaded Deep Pipeline

Network Network
7 Client Batch Creation
Requests & &
Message Input Prepare Output Me:sage
from d (1]

& Commit
-»é —>| Worker &
-’& & ’| Execute _1§
N

Replicas

Clients
and
Replicas

or
Clients

Checkpoint

=

A
ANENNNNNNNNNNNN RN SANNNNNNNNAN

Pipeline at Primary Replica

/\

=X

Network Network

? Pre-prepare,

é Prepare

é & Commit | wyorker Execute
Message é Input % - % Me:zage
from —% §§ .
Clients :é . / Replicas

a 7zl i\\ or

Realll' ’4 > . Clients
plicas /%' % Checkpoint

Z

7

Pipeline at Non-Primary Replica

ResilientDB8 @ Expolab

g

Insight 1: Multi-Threaded pipeline Gains

901

n —m— PBFT OE 0B
N —+— PBFT 1E 0B

80 \ —4— PBFT 1E 1B
= \ —— PBFT 1E 2B
) —®- ZYZOE 0B
;i 70 \
= ~ —%-- ZYZ 1E 0B
% ~. —&- ZYZ1E 1B
= 60 > —4- ZYZI1E2B
>y
)
=] 50'
(e
=
=~ 40

30

4 8 16 32

Number of Replicas

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

/ (3 HResilientDB @ExpoLab 71

Insight 1: Multi-Threaded pipeline Gains

PBFT OE 0B

+
90 —*— PBFT 1E 0B
N —4— PBFT IE 1B
80 e —4— PBFT IE 2B
S~ -m- ZYZOE 0B
"~ —*-- ZYZ1E 0B

|
—

~. —&- ZYZ1E 1B
' - ZYZ1E 2B

n
—]

O —
_—
_—
Y —
e,

=~ —
—_—
 —
. —

Throughput (KTxns/s)
=2
—)

=
=)

)
—

4 8 16 32
Number of Replicas

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

/ L3 JResilientDB @ Expolab 72

Insight 1: Multi-Threaded pipeline Gains

140 L
—+— PBFT 1E 0B
A. —4— PBFT IE 1B
@ 120 N o
g \ —m- ZYZOE 0B
ﬁ 100 \. P
M . —&- ZYZ1E 1B
N
; - ZYZ 1E 2B
2 80
=
bD —.
g \\\\\
h I =
L e e
- T Teme—e T =
. ———— T .':.':.':.':.

4 8 16 32
Number of Replicas

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

/ S’ ResilientDB @ Expolab 73

Insight 1: Multi-Threaded pipeline Gains

2001 S~ —=— PBFT 0E 0B
TN —~— PBFT 1E 0B
175 '~ —A— PBFT 1E 1B
Q S —4— PBFT1E2B
£ 150 TS ~®- ZYZOE 0B
. N —%- ZYZ1E 0B
s : - ZYZ1E 1B
E 125 - ZYZ1E2B
=
_: 4
= 100
=
S
= 75 i
-
50
251

4 8 16 32
Number of Replicas

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

Creativity Unfolded

Insight 2: Optimal Batching Gains

125 30

5 100 -

2 z20]

= =

S 50 -

: 10

= 25

01 0] —— ¢ —
i 10 100 300 1000 5000 1 10 100 300 1000 5000
Number of Txns per Batch Number of Txns per Batch

More transactions batched together = increase in throughput

/ * —=>reduced phases of consensus.

L 3JResilientD8 @Expotab 75

Insight 3: Memory Storage Gains

1001

80-

60-

40

Throughput (KTxns/s)

20

SQLite

In Memory

Latency (s)

10

=

o

SQLite

In Memory

In-memory blockchain storage = reduces access cost.

—

\,

@ResilientDB @ ExpoLab 76
Creativity Unfolded

ResilientDB: Hands On

Visit at: https://github.com/resilientdb/resilientdb

ExpoLab @ ResilientDB
Creativity Unfolded

UCDAVIS

UNIVERSITY OF CALIFORNIA

@ResilientDB @ ExpoLab
Creativity Unfolded

https://github.com/resilientdb/resilientdb

How to Run ResilientDB?

* Go to https://github.com/resilientdb/resilientdb and Fork it!

* Install Docker-CE and Docker-Compose (Links on git)

* Use the Script “resilientDB-docker” as following:

JresilientDB-docker --clients=1 --replicas=4

JresilientDB-docker -d [default 4 replicas and 1 client]

* Result will be printed on STDOUT and stored in res.out file.

/ Q‘Resi[i,entDB @EXPOLab /8

https://github.com/resilientdb/resilientdb

How to Run ResilientDB?

LI resilientdb / resilientdb @ Watchv 5 * Unstar = 11 YFork 13

Code Issues 1 Pull requests 0 Actions || Projects 0 Wwiki Security Insights

ResilientDB: A scalable permissioned blockchain fabric

D 46 commits P 1branch {7 0 packages © 2 releases 42 4 contributors s MIT

-
Branch: master v New pull request Create new file = Upload files = Find file
u gupta-suyash readme updated Latest commit f23@2e6 3 days ago
i benchmarks Initial Commit 16 days ago
i blockchain ledger archiecture defined 4 days ago
i client Initial Commit 16 days ago
i deps Initial Commit 16 days ago
il scripts added -e to handle multiple clients in docker-ifconfig 13 days ago
i statistics Initial Commit 16 days ago
i system ledger archiecture defined 4 days ago
i transport Initial Commit 16 days ago
[E .gitignore Initial Commit 16 days ago
[E) CHANGELOG.md changelog added 3 days ago
[E) CODE_OF_CONDUCT.md Create CODE_OF_CONDUCT.md 15 days ago
[E) LICENSE.md Initial Commit 16 days ago
[E) Makefile Initial Commit 16 days ago
[E) README.md readme updated 3 days ago
[E config.cpp Initial Commit 16 days ago
[E config.h ledger archiecture defined 4 days ago
[£) resilientDB-docker Initial Commit 16 days ago nResilientDB ExpoLab 79

) Creativity Unfolded

Docker CE

What is Docker?

an open-source project that automates the deployment of software applications
Inside containers by providing an additional layer of abstraction and automation of
OS-level virtualization on Linux.

* Run a distributed program on one machine

« Simulate with lightweight virtual machines

= = - \
/ @ResilientDB @ EXPOLab 80
Creativity Unfolded

Docker CE

What is Docker?

an open-source project that automates the deployment of software applications
Inside containers by providing an additional layer of abstraction and automation of
OS-level virtualization on Linux.

* Run a distributed program on one machine

« Simulate with lightweight virtual machines

= = - \
/ @ResilientDB @ EXPOLab 81
Creativity Unfolded

Resilient DB

.JresilientDB-docker -d

./reéiliéﬁtDB;docker -d

Number of Replicas: 4
Number of Clients: 1
. Stopping previous containers...
* Remove old Containers Stopping s3 ...

Stopping s1 ...

Stopping s4 ...

. Stopping c1 ...

* Create new Containers E e R

Removing s3 ...

Removing s1 ...

Removing s4 ...

Removing c1 ...

Removing s2 ...
Removing network resilientdb_default

* Create IP address settings

* Install dependencies

Creating docker compose file ...

. Starting the containers...
. Compﬂe Code Creating network "resilientdb_default" with the default driver
Creating s4 ...
Creating c1 ...
Creating s1 ...

* Run binary files Creating s2 ...

Creating s3 ...

ifconfig file exists... Deleting File
¢ Gather the results Server sequence --> IP

cl --> 172.21.

sl --> 172.21.

s2 --> 172.21.

s3 --> 172.21.0.

s4 --> 172.21.0.

Put Client IP at the bottom

Checking Dependencies...
Installing dependencies..
/home/sajjad/WS/expo/resilientdb

Resilient DB

Throughputs:

0:
1lE
74
S

Throughput
4:

. Latencies:

* Transaction per second latency 4:

idle times:
Average Latency Idleness of node:
Worker THD ©:
Worker THD
* The from client request to client reply Worker THD
Worker THD 3:
Worker THD 4:
1 1 Idleness of node:
Working Thread idleness rdleness of
Worker THD 1:
* The time that thread is waiting Worker THD 2:
Worker THD 3:
Worker THD 4:
. Idleness of node:
WTO0: Consensus Messages vorker THD ©:
Worker THD 1:
Worker THD
WT1 and WT2: Batch Threads pe LS
Worker THD 4:
Idleness of node:
. . Worker THD ©:
WT3: checkpointing Thread Worker THD 1:
Worker THD 2:
Worker THD 3:

Work THD 4:
WT4: Execute Theread e

0: 172 MB
: 156 MB
: 155 MB
: 156 MB
: 812 MB

avg thp: 4:
avg 1t : 1:

PBFT: Practical Byzantine Fault Tolerance

Normal Case (Non-faulty Primary)

Client

Primary "

/

Replical @

Replica 2 @ \ .
Byzantine Replica @ \

Client Request Pre-Prepare O(n) Prepare O(n?) Commit O(n?) Reply

/ e —

il

)
)
/

L3 JResiliento® @Expotab 84
Creativity Unfolded

PBFT: Practical Byzantine Fault Tolerance

Client/client_main.cpp
System/client_thread.cpp
ClientQueryBatch Class

Process ClientBatch in primary

Client Request

client_main.cop X

client > client_main.cpp > ...

int main(int argc, char xargv[])
{

printf("Running client...\n\n");

parser(argc, argv);
assert(g_node_id >= g_node_cnt);
uint64_t seed = get_sys_clock();
srand(seed);

printf("Random seed: %ld\n", seed);

int64_t starttime;
int64_t endtime;
starttime = get_server_clock();

printf("Initializing stats... ");
fflush(stdout);
stats.init(g_total_client_thread_cnt);
printf("Done\n");

printf("Initializing transport manager... ");
fflush(stdout);

tport_man.init();

printf("Done\n");

printf("Initializing client manager...
Workload *m_wl = new YCSBWorkload;
m_wl->Workload::init();

client_thread.cpp X

client_thread.cpp > ...

RC ClientThread::run()

tsetup();
printf("Running ClientThread %ld\n", _thd_id);

while (true)
{
keyMTX. lock();
if (keyAvail)
{
keyMTX.unlock();
break;
+
keyMTX.unlock();

BaseQuery *xm_query;

uint64_t iters = 0;

uint32_t num_txns_sent = 0;

int txns_sent[g_node_cnt];

for (uint32_t i = 0; i < g_node_cnt; ++i)
txns_sent[i] = 0;

run_starttime = get_sys_clock();

JResitientos &S Expolab

85

PBFT: Practical Byzantine

Transport/message.cpp
System/worker_thread.cpp
System/worker_thread_pbft.cpp
Worker Thread: Run function

Worker Thread: Process function

Process Messages

worker_thread.cpp X

system >

worker_thread.cpp > @ WorkerThread::run()

RC WorkerThread: :run()

{

tsetup();
printf("Running WorkerThread %ld\n", _thd_id);

uint64_t agCount = @, ready_starttime, idle_starttime = 0;

next_set = 0;

while (!simulation—>is_done())
{
txn_man = NULL;
heartbeat();
progress_stats();

#if VIEW_CHANGES

#endif

Message *msg = work_queue.dequeue(get_thd_id());

ault Tolerance

worker_thread.cpp X
system > worker_thread.cpp > @ WorkerThread::process(Message *)

voig WorkerThread: :process(Message *msg)
RC rc __attribute__((unused));

switch (msg->get_rtype())

{

case KEYEX:
rc = process_key_exchange(msg);
break;

case CL_BATCH:
rc = process_client_batch(msg);
break;

case BATCH_REQ:
rc = process_batch(msg);
break;

case PBFT_CHKPT_MSG:
rc = process_pbft_chkpt_msg(msg);
break;

case EXECUTE_MSG:
rc = process_execute_msg(msg);
break;

#if VIEW_CHANGES

#endif
case PBFT_PREP_MSG:
rc = process_pbft_prep_msg(msg);
break;
case PBFT_COMMIT_MSG:
rc = process_pbft_commit_msg(msg);
break;
default:
\n", msg->get_rtype());

fflush(stdout) ;
assert(false);
break;

IS ResilientDB

PBFT: Practical Byzantine Fault Tolerance

« System/worker_thread_pbft.cpp

 process_client_batch Function

* Create and Send Batch Request

* create_and_send_batchreq Function

¢ Create Transactions

* Create Digest

* BatchRequest Class

* Pre-Prepare Message

Process Client Message

worker._thread_pbft.cop X

system > worker_thread_pbft.cpp > ...

RC WorkerThread::process_client_batch(Message *msg)

{

ClientQueryBatch *clbtch = (ClientQueryBatch *)msg;

validate_msg(clbtch);

#1f VIEW_CHANGES

if (g_node_id !'= get_current_view(get_thd_id()))

client_gquery_check(clbtch);
return RCOK;

fail_primary(msg, 9);
#endif

uint64_t Message::txn_id
create_and_send_batchreq(clbtch, clbtch->txn_id);

return RCOK;

worker_thread.cop X

system >

worker_thread.cpp > @ WorkerThread::create_and_send_batchreq(ClientQueryBatch * uint64_t)

v0id WorkerThread::create_and_send_batchreq(ClientQueryBatch *msg, uint64_t tid)

{

Message *bmsg = Message::create_message (BATCH_REQ);
BatchRequests *breq = (BatchRequests *)bmsg;
breq->init(get_thd_id());

next_set = tid;

string batchStr;

for (uint64_t i = @; i < get_batch_size(); i++)
{

uint64_t txn_id = get_next_txn_id() + i;

txn_man = get_transaction_manager(txn_id, 0);

while ()

q

1 ready = txn_man->unset_ready();

if (!ready)

{
continue;

+

else

{
break;

}

L3 JResitientOB @ Expolab

87

PBFT: Practical Byzantine Fault Tolerance

Process Batch Request (Prepare)

System/worker_thread_pbft.cpp worker._thread.pbft.cpp

system > worker_thread_pbft.cpp > @ WorkerThread::process_batch(Message *)

* process_batch Function

* Create and Send Prepare Message
* Create Transactions
¢ Save Digest

[]

orkerThread:: _batch(Message)
PBFTPrepare ClaSS ic WorkerT process_batch(Message *msg

uint64_t cntime = get_sys_clock();

¢ Prepare Message BatchRequests xbreq = (BatchRequests *)msg;

assert(g_node_id !'= get_current_view(get_thd_id()));

validate_msg(breq);

/ L3 JResilientDB @ Expolab 88

PBFT: Practical Byzantine Fault Tolerance

Process Prepare and Commit Messages(Prepare)

 System/worker_thread_pbft.cpp worke.fread pbftcpp X R

system > worker_thread_pbft.cpp > ... system > worker_thread_pbft.cop > @ WorkerThread::process_pbft_commit_msg(Message *)

* process_pbft_prepare Function

¢ Count Prepare Messages

* Create and Send commit Message

° PBFTCOHlmlt Message RC WorkerThread: :process_pbft_prep_msg(Message *msg) %C WorkerThread: :process_pbft_commit_msg(Message *msg)
{ Y

* process_pbft_commit Function

if (txn_man->commit_rsp_cnt == 2 % g_min_invalid_nodes + 1)
if (txn_man->prep_rsp_cnt == 2 % g_min_invalid_nodes) { . . T
. Count commit messages { X txn_man->txn_stats.time_start_commit = get_sys_clock();

txn_man->txn_stats.time_start_prepare = get_sys_clock();
}

* Create and Send execute Message
PBFTCommitMessage *pcmsg = (PBFTCommitMessage *)msg;

PBFTPrepMessage xpmsg = (PBFTPrepMessage *)msg; validate_msg(pcmsg);

* ExecuteMessage Class validate_msg(pnsg) ;

txn_man->add_commit_msg(pcmsg);

if (prepared(pmsg))

‘ if (committed_local(pcmsg))

{

txn_man->send_pbft_commit_msgs(); R RSO

server_timer->endTimer(txn_man—>hash);

INC_STATS(get_thd_id(), time_prepare, get_sys_clock() - txn_man->tx LALER

b2

send_execute_ms B
return RCOK; _execute_msg();

PBFT: Practical Byzantine Fault Tolerance

System/worker_thread.cpp

Internal Message

process_execute Function

Execute the Transactions in batch in order
Create and send Client Response

ClientResponse Class

Process Execute Message

worker_thread.cpp X

system > worker_thread.cpp > €@ WorkerThread::process_execute_msg(Message *)

RC WorkerThread: :process_execute_msg(Message *msg)

i

uint64_t ctime = get_sys_clock();|

Message xrsp = Message::create_message(CL_RSP);
ClientResponseMessage xcrsp = (ClientResponseMessage *)rsp;
crsp—>init();

ExecuteMessage xemsg = (ExecuteMessage *)msg;

uint64_t i;

for (i = emsg—>index; i < emsg->end_index - 4; i++)

{

TxnManager xtman = get_transaction_manager(i, 0);

inc_next_index();

tman->run_txn();

tman->commit();

crsp->copy_from_txn(tman);

PBFT: Practical Byzantine Fault Tolerance

Work Queue

Lock Free queues

All the messages are being stored in these queues
System/work_queue.cpp

Multiple queues for different Threads

Dequeue and Enqueue Interfaces

Enqueue in IOThread

Dequeue in Worker Thread

work_queue.cpp X

system >

4

work_gueue.cpp > ...
QWorkQueue: :enqueue(uint64_t thd_id, Message *msg, bool busy)

uint64_t starttime = get_sys_clock();

assert(msg);

DEBUG_M("QWorkQueue: :enqueue work_queue_entry alloc\n");

work_queue_entry xentry = (work_queue_entry x)mem_allocator.align_alloc(sizeof(work_queue_ent
entry—->msg = msg;

entry->rtype = msg—>rtype;

entry—>txn_id = msg->txn_id;

entry—->batch_id = msg->batch_id;

entry->starttime = get_sys_clock();

assert(ISSERVER || ISREPLICA);

DEBUG("Work Enqueue (%1d,%1ld) %d\n", entry—>txn_id, entry->batch_id, entry->rtype);

if (msg—>rtype == CL_QRY || msg—>rtype == CL_BATCH)
{

if (g_node_id == get_current_view(thd_id))

{

while (!new_txn_queue->push(entry) && !simulation—>is_done())
{
}
¥
else
{
assert(entry—->rtype < 100);
while (!work_queue[@]->push(entry) && !simulation—->is_done())

PBFT: Practical Byzantine Fault Tolerance

IO Thread and Transport Layer

* Multiple Input Threads io_threadicpp X
system > io_thread.cpp > ...

RC InputThread::server_recv_loop()

* Multiple Output Threads p

. myrand rdm;
* System/io_thread.cpp rdn. init(get_thd_id());
RC rc = RCOK;
assert(rc == RCOK);
« Transport Layer: TCP Sockets Ry A
std::vgctor<M;ssage *> *msgs;
while (!simulation—>is_done())

« Nano Message Library (

heartbeat();

. Transport/transport.cpp #if VIEW_CHANGES

/ #endif

msgs = tport_man.recv_msg(get_thd_id());

Configuration Parameters to Play

« NODE_CNT Total number of replicas, minimum 4, that is, f=1.

« THREAD_CNT Total number of threads at primary (at least 5)

« CLIENT_NODE_CNT Total number of clients (at least 1).

« MAX_TXN_IN_FLIGHT Multiple of Batch Size

« DONE_TIMER Amount of time to run the system.

« BATCH_THREADS Number of threads at primary to batch client transactions.
« BATCH_SIZE Number of transactions in a batch (at least 10)

« TXN_PER_CHKPT Frequency at which garbage collection is done.

« USE_CRYPTO To switch on and off cryptographic signing of messages.

« CRYPTO_METHOD_ED25519 To use ED25519 based digital signatures.

« CRYPTO METHOD CMAC_AES To use CMAC + AES combination for authentication

/ Q¢ ResilientDB @EXPOLab

Thank You

\
UCDAVIS

