
An In-Depth Look of BFT Consensus
in Blockchain: Challenges and

Opportunities
(System)

Suyash Gupta,
Sajjad Rahnama,

Jelle Hellings,
Mohammad Sadoghi

Session I
1) Blockchain 101

1) What is Blockchain, Applications and Components?
2) Permissionless and Permissioned Blockchain.

2) Transactions and Consensus
3) Primer on Byzantine Fault-Tolerant Consensus
4) Existing Optimizations for BFT Consensus.

Session II
1) PoE: Two-Phases Resilient Consensus.
2) MultiBFT: Parallel and Wait-free Consensus
3) GeoBFT: Global Scale Consensus
4) Reducing Communication between Clusters

Hands-on ResilientDB

Agenda

2

• A linked list of blocks.

• Each block contains hash of the previous block.

• A block contains information about some client transactions.

What is Blockchain?

Data

Previous
Hash

Data

Genesis

Data

Previous
Hash

Previous
Hash

Client Transactions

New
Block

3

• By User:Pedant, User:Wapcaplet, User:Antonu, User:Vanderlindenma, User:.js. - Composition of File:Barnstar of Diligence Hires.png + File:Voting hand.svg., CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=45960536

• https://blog.devolutions.net/2017/10/whats-the-difference-between-2fa-and-mfa

Why Blockchain?

Democracy
Decentralization
Authentication

Security

4

https://commons.wikimedia.org/w/index.php%3Fcurid=45960536

Blockchain Applications?

• Jacobsen et al., Blockchain Landscape and AI Renaissance: The Bright Path Forward. Middleware (Tutorials) 2018: 2:1
5

Components of a Blockchain System

• Replicas à Store all the data.

• Client à Sends transactions to process.

• Consensus Protocol à Helps ordering transactions.

• Cryptographic Constructs à Authenticate replicas and clients.

• Ledger à Records transactions.

• https://medium.com/@blake_hall
6

Consensus

Primary

Malicious

Crashed
Client

7

Types of Blockchain Systems
• Permissionless à Open Access

• Anyone can participate.

• Identities of the replicas unknown.

• Applications include crypto-currency and money exchange.

• Permissioned à Restricted Access

• Only a selected group of replicas, although untrusted can participate.

• Identities of the replica known a priori.

• Applications include health-care and energy trading.

8

BITCOIN

• First Crypto-currency à a monetary application.

• Uses Nakamoto consensus à Proof-of-Work beneath the skin.

• Supports permissionless access.

• Requires solving hard cryptographic puzzles.

• Any replica that wants to create a new block proves that it did solve the puzzle.

• Difficulty of the puzzle helps prevent malicious attacks.

• By Ma.prezentalok - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68898918
9

ETHEREUM

• Another Crypto-currency à a token used in variety of applications.

• Uses Proof-of-Work but plans to start using Proof-of-Stake.

• Supports permissionless access.

• Allows programmers to design their transactions or “smart contracts”.

• Hard dependency on Ethereum Virtual machine (EVM).

• Envisions design of Permissioned applications.

• By Ethereum Foundation - https://camo.githubusercontent.com/1b3d0063d6a8bcd56ca07b0ea2ef0f71b17a0fa8/687474703a2f2f737667706f726e2e636f6d2f6c6f676f732f657468657265756d2e737667, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=52278619

10

11

Permissioned Blockchain Systems

• Require identities of the participating replicas to be known a priori.

• Replicas still untrusted à Consensus through traditional BFT protocols.

• Computationally in-expensive.

• Communication intensive.

• Prevent chain forks.

• Suitable for needs of an industry à JP Morgan, IBM, Oracle

• Advent path for Blockchain Databases.

12

Transactions, Agreement and Consensus

13

The Omniscient Transaction

• A transformation from a consistent state to another consistent state.

• A contract between two or more parties.

• A collection of Read or Write operations.

• Types of transactions: nested, compensating, multi-operation etc.

14

ACID Properties

• Atomicity: A transaction either completes fully or none of its changes take place.

• Consistency: The transaction must obey legal protocols

• Isolation: The intermediate state of a transaction is invisible to other transactions

• Durability: Once a transaction is committed, it cannot be abrogated

D C

I

A

15

Consistency vs Availability

• An ongoing struggle that causes performance tradeoffs.

• Availability à Database needs to be always available for use.

• Solution? Replication

• Issues? Faults, Failures and Attacks.

• Consistency à Database needs to be correct.

• Solution? All replicas should have same state.

• Issues? Expensive.

• By Ryan Child - http://www.navy.mil/view_image.asp?id=24509, Public Domain, https://commons.wikimedia.org/w/index.php?curid=182472
16

Partitioning vs Replicating

• Distributed Databases can be partitioned, replicated or both.

• Partitioning à Split database into multiple disjoint partitions.

• Replication à Multiple full copies of the database.

• Partitioned Replication à Multiple partitions, where each partition employs

replication.

17

Agreement in Partitioned Databases

• Partitioned Databases receive client transactions that may access multiple partitions.

• Deciding the fate of multi-partition transactions requires coordination among the

partitions.

• Coordination is costly but necessary.

• Coordination or agreement among the partitions should be both safe and live.

18

A Deep Dive into BFT Consensus
(Theory Slides Continue)

Modern BFT Consensus Optimizations

PBFT: Practical Byzantine Fault Tolerance

• First practical Byzantine Fault Tolerant Protocol.

• Tolerates up to f failure out of 3f+1 replicas

• Three phases of which two require quadratic communication complexit.

• Safety is always guaranteed and Liveness is guaranteed in periods of partial synchrony.

• View-Change protocol for replacing malicious primary

21

PBFT Failure-Free Flow

Client

Replica 1

Replica 2

Byzantine
Replica

Primary

T

Pre-Prepare
O(n)

Prepare
O(n2)

Commit
O(n2)

ReplyClient
Request

22

PBFT Primary Failure (View Change)

Replica 1

Replica 2

Byzantine Primary

New Primary

View Change
Message

View Change
Acks

New View
Message

Enter New View

23

All about Eve: Execute-Verify Replication
for Multi-Core Servers [OSDI’12]

• New Architecture: Execute/verify instead of Agree/Execute.

• Execute multiple requests concurrently and then verify the output.

• Takes advantage of parallel hardware to improve performance.

• Non-deterministic multi-threaded execution

• The Byzantine agreement is on the output instead of sequence.

• Allows divergence in execute and roll back in case

24

Eve’s Execute-Verify Flow

Client

Replica 1

Replica 2

Replica 3

Primary

Send
Execution

Token

Prepare Commit
Roll back

ReplyClient
Request

Batching

PBFT phasesExecution happens
before consensus

25

Zyzzyva: Speculative Byzantine Fault Tolerance
[SOSP’07]

• Employs Speculation to achieve consensus in a single phase.

• In the best case (no failures), it only requires linear communication complexity.

• Depends on its good clients, for achieving common order among the replicas.

• Client needs identical response from all the 3f+1 replicas.

• With just one crash fault it faces severe throughput degradation.

• Recently, proven unsafe.

26

Zyzzyva Failure-Free Flow

Client

Replica 1

Replica 2

Replica 3

Primary
T

ReplyClient
Request

Pre-prepare

Speculative Execution

Client needs
3f+1 responses

27

Zyzzyva Flow with the Failure
of One Non-Primary Replica

Client

Replica 1

Replica 2

Byzantine Replica

Primary
T

Pre-prepare Reply Commit
Certificate

Certificate
Reply

Client
Request

Client
Timeouts

28

Zyzzyva View Change Protocol

Replica 1

Replica 2

Byzantine Primary

New Primary

I Hate
Primary

Join after
Receiving

f+1 IHP

View Change
Messages

New View
Propose

New View
Confirmation

Enter
New View

29

RBFT: Redundant Byzantine Fault Tolerance
[ICDCS’13]

• Robust BFT protocol, perform well in the presence of smart malicious primary.

• Runs f+1 instance of BFT protocol to monitor best performance .

• Do not rely on one specific primary.

• One Master primary and f backup instance of protocol always being executed.

• Goal: replicas monitor the throughput of the primary and replace it with one

of the backups when it is slow to achieve robustness

30

RBFT’s Multiple Redundant Primary Design

Primary

Replica

Replica

Replica

Primary

Replica

Replica

Replica

Primary

Replica

Replica

Replica

Replica

Replica

Replica

Replica

Replica

Replica

Replica

Replica

Replica

BFT Instance 1

BFT Instance 2

BFT Instance 3

Node 2Node 1 Node 3 Node 5Node 4 Node 6 Node 7

n=7 replicas, f=1 and f+1=3 instances

31

f+1 instances

RBFT Failure-Free Flow

Client

Replica 1

Replica 2

Replica 3

Replica 0

Pre-Prepare Prepare Commit ReplyClient
Request

Propagate

PBFT phases
32

Hotstuff: BFT Consensus in the Lens of Blockchain
[PODC’19]

• Splits each O(n2) phase of PBFT into two linear phases.

• Changes leader at the end of each consensus.

• Employs expensive threshold signatures to linearize consensus.

• Two versions:

• Basic Hotstuff: Unfolding each phase of PBFT into two round and make it linear.

• Chained Hotstuff: Pipelined version of basic one, each phase different role for different view.

33

Hotstuff Protocol Flow

Replica 1

Replica 2

Byzantine
Replica

Primary

ProposalView
change

Prepare
vote

Pre-commit
Message

Pre-commit
Vote

Commit
Message

Commit
Vote

Decide

Prepare
Phase

Pre-Commit
Phase

Commit
Phase

34

Attested Append-Only Memory:
Making Adversaries Stick to their Word [SOSP’07]

• Uses a trusted component to reduce the hard-limit of one-third byzantine failures.

• Trusted component removes equivocation à Primary cannot lie about the order.

• A2M à Set of trusted, undeniable, ordered logs.

• Messages in the log can be verified by everyone using attestation.

• Attestation overheads: log writing, verifying.

35

Attested Append-Only Memory
A2M-PBFT-E

• Protecting the execution by adding attestation to client reply

• Safety and liveness when f<n/3

• Just Safety when f <n/2

A2M-PBFT-EA

• Append all messages to the A2M Log

• Protect Execution and Agreement with log

• Safety and liveness when f<n/2

36

Attested Append-Only Memory:
PBFT with Execution Protection

Client

Replica 1

Replica 2

Byzantine
Replica

Primary

Pre-Prepare Prepare Commit Reply
(logged)

Client
Request

37

Attested Append-Only Memory:
Making Adversaries Stick to their Word

Attested Append Only Memory PBFT with Execution and Agreement Protection:

Client

Replica 1

Replica 2

Byzantine Replica

Primary

Client request

Pre-Prepare O(n) Prepare O(n2) Commit O(n2) Reply(logged)Client Request

38

Towards Scaling Blockchain Systems via Sharding
[SIGMOD’19]

• Introduces the notion of multiple chains.

• Data is partitioned into shards à Each shard uses 3f+1 replication.

• PBFT within each shard to provide Byzantine Fault-Tolerance.

• Multi-shard transactions require Two-Phase Commit protocol.

• Authors use SGX Trusted Hardware to reduce costs (n =2f+1)

39

Towards Scaling Blockchain Systems via Sharding

S1 Replica 1

S1 Replica 2

S1 Primary

S2 Replica 1

S2 Replica 2

S2 Primary

Shard
1

Shard
2

Pre-Prepare Prepare Commit

Single-shard transactions are fast!

40

Towards Scaling Blockchain Systems via Sharding

Multi-shard Transactions need 2PC protocol à Initiated by the Reference Committee.

Reference Committee

Shard 2

Shard 3

Shard 1

Votes Global
Decision

Prepare
transaction

41

Monoxide: Scale out Blockchains with Asynchronous
Consensus Zones (NSDI’19)

• Apply sharding on public blockchain cryptocurrency with Asynchronous Consensus Zone.

• Eventual Atomicity: First withdraw transaction, Later the deposit transaction.

• Asynchronous Consensus Zone: Parallel chains in different zones working independently.

• Mining power amplification: Chu-ko-nu Mining distributes mining power evenly across zones.

• Cross Zone Transactions: broadcasting relay transactions for the inter-zone part of the TXNs.

42

Normal Case with Good Primary and one fault

Zone 1

Zone 3

Zone 2

Monoxide: Scale out Blockchains with Asynchronous
Consensus Zones

Block t+1 Block t+2 Block t+3 Block t+4 Block t+5 Block t+6

Block r+1 Block r+2 Block r+3 Block r+4 Block r+5 Block r+6

Block l+1 Block l+2 Block l+3 Block l+4 Block l+5 Block l+6

Relay Transaction

43

Algorand: Scaling Byzantine Agreement for
Cryptocurrencies [SOSP’17]

• Committee Based Consensus: Scalability through consensus among selected users.

• Proof of Stake: Block proposers selected based on their stake.

• Cryptographic Sortition: Committee selection done independently at each node.

• Verifiable Random Function: Takes a secret key and a value and produces a

pseudorandom output, with a proof Secret key

Seed
VRF

Random Number

Proof

44

Algorand: Scaling Byzantine Agreement for
Cryptocurrencies

Select
Committe

e
Block Proposal Reduction Binary Byzantine Agreement

Final
Agreement

Tentative
Agreemen

t

Using VRF
and Gossip

Selected members
will propose blocks

Reduce to one block
to consider using

priority

Choose selected block
or empty block

2 – 11 round of
voting

• Final consensus: consensus is reached and block is accepted

• Tentative consensus: other users may reached tentative
consensus on different block,
• Fixed during recovery process or final block after

45

SESSION II

An In-Depth Look of BFT Consensus in
Blockchain: Challenges and Opportunities

Requirements of Existing BFT Protocols

1) Require three phases of communication, of which two necessitate quadratic

communication (PBFT).

2) Expect no failures or dependence on clients (Zyzzyva).

3) Incur high client latencies due to many phases of communication (PBFT, HotStuff).

4) Require threshold signatures, which are computationally expensive (HotStuff).

5) Require more than 3f+1 replicas (Q/U, HQ).

6) Need trusted components (AHL, Attested Append-only memory).

47

Proof-of-Execution (PoE):
Reaching Consensus through Fault-Tolerant Speculation

• Speculative Execution to reduce the client latency.

• Out-of-Order message processing for transactions.

• Two-Phases of communication.

• No Dependence on Clients or requirement of expensive cryptographic primitives.

48

PoE vs Other Protocols

49

PoE Protocol (Non-Faulty Primary)

Client

Replica 1

Replica 2

Byzantine Replica

Primary

Client
request

Propose
O(n)

Support
O(n2)

Inform
O(n)

50

PoE View Change Protocol:
Replacing Malicious Primary

Replica 1

Replica 2

Byzantine Primary

New Primary

View Change
Request

Join after
Receiving

f+1 VC request

View Change
Acks

New View
Propose

New View
Acks

Enter
New View

51

PoE Scalability under Single Failure

52

Scaling Blockchain Databases through Parallel Resilient
Consensus Paradigm

• Why should BFT protocols rely on just one primary replica?

• Malicious primary can throttle the system throughput.

• Malicious primary requires replacement —> fall in throughput.

53

Multiple Byzantine Fault-Tolerance
(MultiBFT) Paradigm

• Designate multiple replicas as Primaries!

• Run multiple parallel consensuses on each replica.

BFT protocol

Number of
Instances (z)

Replication Unification Execution
Create z instances at
each replica and run z
parallel BFT instances.

Create a global order
of all the requests.

Execute the requests
in a global order and
reply to clients.

54

MultiBFT Flow
Create f+1 instances at each replica.

Mark f+1 replicas as primaries.

Replica 1 primary Instance 1
Replica 2 primary Instance 2

.

Replica f+1 primary Instance f+1

Divide clients into f+1 sets.

Each primary runs independent
input BFT consensus.

Each client sends
request to its primary.

Execute thread waits for
f+1 instances to

replicate their client requests.
Coordinator thread receives f+1 view
change messages for same primary.

An instance
replicates its client request.

An instance
requests a view change.

Forward incoming view change
messages to coordinator thread.

Coordinator waits for each f+1 instance
to replicate its client request or

f+1 view change messages.

Coordinator assigns a new primary to each
instance with f+1 view change messages.

Each replica with
new primary

switches to new view.

Execute thread executes each request in order.
Each instance replies to its client.

Replication

Unification

Execution

Input
BFT protocol.

55

Malicious Primaries Collusion

• Multiple malicious primaries can prevent liveness!

• Solution à Optimistic Recovery through State Exchange.

Goo
d R

epl
ica

s

|A| =
 f

Good Replicas

|B| = f

Good Replica
|C| = 1

Other f-2
Malicious Replicas

P1 P2|M| = f

Op1
Op2

56

Client

Replica

Byzantine
Replica

Primary
Replica

T

Pre-Prepare Prepare Commit ReplyRequest

T
1

2

1

2

1

2

1

2

Client

Primary
Replica

MultiBFT using PBFT with 2 parallel instances on each replica 57

MultiBFT Scalability

58

Global Scale Resilient Blockchain Fabric

• Traditional BFT protocols do not scale to geographically large distances.

• Blockchain requires decentralization à replicas can be far apart à expensive

communication!

• The underlying BFT consensus protocol should be topology-aware.

59

Vision Geo-Scale Byzantine Fault-Tolerance

60

Each cluster runs PBFT
protocol in parallel on
its client request.

Primary at each cluster
creates a certificate and

sends to f+1 replicas of all
the other clusters.

GeoBFT Protocol

Replication Certification Execution
Execute the requests
in a global order and
reply to clients.

• GeoBFT groups replicas into clusters based on the distance between these replicas.

• Each cluster runs the PBFT consensus protocol, in parallel and independently.

61

Client

Replica 1

Replica 2

Replica 3

Primary

Prepare ReplyClient Request Pre-Prepare

Client

Replica 1

Replica 2

Replica 3

Primary

Commit Certification

Cluster 1
Montreal

Cluster 2
Sydney

62

GeoBFT Takeaways

• To ensure common ordering à linear communication among the clusters is

required.

• Primary replica at each cluster sends a secure certificate to f+1 replicas of every

other cluster.

• Certificates guarantee common order for execution.

• If primary sends invalid certificates à will be detected as malicious.

63

GeoBFT Scalability

64

ResilientDB: High Throughput Yielding,
Scalable Permissioned Blockchain Fabric

Visit at: https://resilientdb.com/

https://resilientdb.com/

Why Should You Chose ResilientDB?

1) Bitcoin and Ethereum offer low throughputs of 10 txns/s.

2) Existing Permissioned Blockchain Databases still have low

throughputs (20K txns/s).

3) Prior works blame BFT consensus as expensive.

4) System Design is mostly overlooked.

5) ResilientDB adopts well-researched database and system practices.

66

Dissecting Existing Permissioned Blockchains

1) Single-threaded Monolithic Design

2) Successive Phases of Consensus

3) Integrated Ordering and Execution

4) Strict Ordering

5) Off-Chain Memory Management

6) Expensive Cryptographic Practices

67

Can a well-crafted system based on a classical BFT
protocol outperform a modern protocol?

68

ResilientDB Architecture

HASHING
TOOLKIT

SIGNING
TOOLKIT

SECURE
LAYER

STORAGE LAYER

BLOCKCHAIN
METADATA

THREADS

BFT CONSENSUS

QUEUES

EXECUTION LAYER

NET WORK

ResilientDB Multi-Threaded Deep Pipeline

Client
Requests

Prepare
& Commit

Input

Network

Message
from

Clients
and

Replicas

Network
Batch Creation

Worker

Checkpoint

Execute

Output Message
to

Replicas
or

Clients

Pre-prepare,
Prepare

& Commit
Input

Network

Message
from

Clients
and

Replicas

Network

Worker

Checkpoint

Execute
Output Message

to
Replicas

or
Clients

Pipeline at Primary Replica Pipeline at Non-Primary Replica

70

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

71

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

72

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

73

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

74

Insight 2: Optimal Batching Gains

More transactions batched together à increase in throughput
àreduced phases of consensus.

75

Insight 3: Memory Storage Gains

In-memory blockchain storage à reduces access cost.

76

ResilientDB: Hands On
Visit at: https://github.com/resilientdb/resilientdb

https://github.com/resilientdb/resilientdb

How to Run ResilientDB?

• Go to https://github.com/resilientdb/resilientdb and Fork it!

• Install Docker-CE and Docker-Compose (Links on git)

• Use the Script ”resilientDB-docker” as following:

./resilientDB-docker --clients=1 --replicas=4

./resilientDB-docker -d [default 4 replicas and 1 client]

• Result will be printed on STDOUT and stored in res.out file.

78

https://github.com/resilientdb/resilientdb

How to Run ResilientDB?

79

Docker CE

What is Docker?

• Run a distributed program on one machine

• Simulate with lightweight virtual machines

80

Docker CE

What is Docker?

• Run a distributed program on one machine

• Simulate with lightweight virtual machines

81

Resilient DB

./resilientDB-docker -d

• Remove old Containers

• Create new Containers

• Create IP address settings

• Install dependencies

• Compile Code

• Run binary files

• Gather the results

82

Resilient DB

• Throughput

• Transaction per second

• Average Latency

• The from client request to client reply

• Working Thread idleness

• The time that thread is waiting

• WT0: Consensus Messages

• WT1 and WT2: Batch Threads

• WT3: checkpointing Thread

• WT4: Execute Theread

83

PBFT: Practical Byzantine Fault Tolerance

Normal Case (Non-faulty Primary)

Client

Replica 1

Replica 2

Byzantine Replica

Primary

T

Pre-Prepare O(n) Prepare O(n2) Commit O(n2) ReplyClient Request

84

PBFT: Practical Byzantine Fault Tolerance
Client Request

• Client/client_main.cpp

• System/client_thread.cpp

• ClientQueryBatch Class

• Process ClientBatch in primary

85

PBFT: Practical Byzantine Fault Tolerance
Process Messages

• Transport/message.cpp

• System/worker_thread.cpp

• System/worker_thread_pbft.cpp

• Worker Thread: Run function

• Worker Thread: Process function

86

PBFT: Practical Byzantine Fault Tolerance
Process Client Message

• System/worker_thread_pbft.cpp

• process_client_batch Function

• Create and Send Batch Request

• create_and_send_batchreq Function

• Create Transactions

• Create Digest

• BatchRequest Class

• Pre-Prepare Message

87

PBFT: Practical Byzantine Fault Tolerance
Process Batch Request (Prepare)

• System/worker_thread_pbft.cpp

• process_batch Function

• Create and Send Prepare Message

• Create Transactions

• Save Digest

• PBFTPrepare Class

• Prepare Message

88

PBFT: Practical Byzantine Fault Tolerance
Process Prepare and Commit Messages(Prepare)

• System/worker_thread_pbft.cpp

• process_pbft_prepare Function

• Count Prepare Messages

• Create and Send commit Message

• PBFTCommit Message

• process_pbft_commit Function

• Count commit messages

• Create and Send execute Message

• ExecuteMessage Class

89

PBFT: Practical Byzantine Fault Tolerance
Process Execute Message

• System/worker_thread.cpp

• Internal Message

• process_execute Function

• Execute the Transactions in batch in order

• Create and send Client Response

• ClientResponse Class

90

PBFT: Practical Byzantine Fault Tolerance
Work Queue

• Lock Free queues

• All the messages are being stored in these queues

• System/work_queue.cpp

• Multiple queues for different Threads

• Dequeue and Enqueue Interfaces

• Enqueue in IOThread

• Dequeue in Worker Thread

91

PBFT: Practical Byzantine Fault Tolerance
IO Thread and Transport Layer

• Multiple Input Threads

• Multiple Output Threads

• System/io_thread.cpp

• Transport Layer: TCP Sockets

• Nano Message Library

• Transport/transport.cpp

92

Configuration Parameters to Play

• NODE_CNT Total number of replicas, minimum 4, that is, f=1.
• THREAD_CNT Total number of threads at primary (at least 5)
• CLIENT_NODE_CNT Total number of clients (at least 1).
• MAX_TXN_IN_FLIGHT Multiple of Batch Size
• DONE_TIMER Amount of time to run the system.
• BATCH_THREADS Number of threads at primary to batch client transactions.
• BATCH_SIZE Number of transactions in a batch (at least 10)
• TXN_PER_CHKPT Frequency at which garbage collection is done.
• USE_CRYPTO To switch on and off cryptographic signing of messages.
• CRYPTO_METHOD_ED25519 To use ED25519 based digital signatures.
• CRYPTO_METHOD_CMAC_AES To use CMAC + AES combination for authentication

93

Thank You

