
Blockchain Landscape and AI Renaissance:
The Bright Path Forward

BY K A I W E N Z H A N G ,
R O M A N V I T E N B ERG ,

H A N S - A R N O JACO B S E N
M O H A M A D SA D O G H I

M O H A M M A D TA BATA BA EI

Link to our companion papers:
http://msrg.org/papers/bcbi-tr
http://heim.ifi.uio.no/~romanvi/debunking-bc-myths.html

fuseelab.github.io

http://msrg.org/papers/bcbi-tr
http://heim.ifi.uio.no/~romanvi/debunking-bc-myths.pdf

Understanding Blockchains

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Historical perspective

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

1983 89 2006 Nov
08

Jan
09

11 13 15 17

Early research in cryptocurrency/consensus

Early cryptocurrency
systems

Long history of bubbles and
bursts

Period of rapid Bitcoin
extensions giving rise to

the concept of blockchain

”blockchain” overcomes
“Bitcoin” in Google searches,

“Bitcoin” rebounds later

Bitcoin white paper by
Satoshi Nakamoto

Open source release and
deployment

Wide acceptance gained,
Bitcoin making news

18

Status today: the Blockchain hype
Bitcoin gold rush

15 percent of top global banks rolled out full-scale commercial blockchain
products in 2017

◦ Goldman Sachs alone investing half a billion USD

Blockchain became national storage technology in Estonia

Blockchain storage strategy and regulations in Netherlands

Microsoft declares “blockchain” as a “must win” technology for the Azure
platform and business

IBM unveils new blockchain-oriented strategy; opens a new department

Dedicated labs and education programs in blockchain engineering around
the globe

◦ A master program in blockchain engineering at the University of Delft

◦ A new course at the University of Oslo, TUM, Cornell, and many others

Hottest topic at many societal, industrial, and academic conferences

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain 101

P1

P2

P3P4

Block 2

Transaction G

Transaction H

…

Block 1

Transaction D

Transaction E

…

Block 0
Genesis

Block

Transaction A

Transaction B

…

Blockchain data structure (replicated at every peer) Peer-to-Peer network

Client 1

Client 2

Cryptography is used to…
…encrypt data, prevent modification, insert new blocks, execute transactions, and query…

the distributed ledger

Consensus

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Distributed Ledger Technology (DLT)

Cryptography and security in blockchains

Encrypt data:

Public Key Encryption

Prevent modification:
Hashed Linked List

Insert new blocks:
Proof-of-Work

Execute transactions:
Smart Contracts

Query the blockchain:

Simple Payment
Verification

Hash(block,nonce) <
0000000XXXXX…

Nounce
(brute-forced)

Validation(Transaction)
Code Hash

(Identical at
all peers)

Merkle Tree

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain
Reference
Architecture
This vision diagram
encompasses all aspects
related to blockchain
technologies.

Upper layers capture
application semantics
and their
implementation.

Lower layers are
concerned with
technical system details.

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain vs. Distributed DB
Blockchains maintain a log (aka a ledger) of all transactions since the
start of deployment

◦ e.g. in Bitcoin, there is no direct record of the current state

The trust model is fundamentally different

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Distributed
database

Blockchain /
distributed ledger

Outline
Session 1: Foundations
◦ Concepts: Byzantine Consensus, Mining, Proof-of-Work, Smart Contracts

◦ Original system: Bitcoin

Session 2: Beyond Bitcoin
◦ Smart contracts

◦ Platforms: Ethereum, Hyperledger

Session 3: Research
◦ System insights

◦ Research directions, integration with AI

Session 4: Hands-on tutorial on Ethereum
◦ Smart contract development and deployment

◦ Tools for deploying and managing Ethereum

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain
Concepts
DEFINITIONS

BITCOIN OVERVIEW

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Bitcoin vs. Blockchain
Bitcoin is a specific system
◦ Design

◦ Open-source implementation

◦ Deployment

◦ There are alternative cryptocurrency systems (some of which are
spawn-offs) but they are not Bitcoin

Blockchain is ambiguous: can be the data structure used in
Bitcoin or a separate concept

A guiding design principle/paradigm
◦ Not even a standard

◦ Generalization of Bitcoin (In what direction?)

◦ Hundreds of implementations

◦ Ethereum alone has hundreds of proprietary deployments in addition
to the main public deployment

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

What is a blockchain-based distributed ledger?

An append-only log storing transactions

Comprised of immutable blocks of data

Deterministically verifiable (using the blockchain data
structure)

Able to execute transactions programmatically (e.g.,
Bitcoin transactions and smart contracts)

Fully replicated across a large number of peers (called
miners in Bitcoin)

A priori decentralized, does not rely on a third party
for trust

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain and the land of ambiguities
Definition 1: a system that uses the blockchain structure of
Bitcoin but extends the functionality
◦ Extended business logic

◦ Different consensus protocol

Definition 2: a system that maintains a chain of blocks
◦ Could be a structure other than that of Bitcoin

Definition 3: a system that maintains a ledger with all
transactions
◦ Not necessarily stored as a chain of blocks

◦ Aka distributed ledger systems

Definition 4: a system with distributed non-trusting parties
collaborating without a trusted intermediary

Definition 5: a system that uses smart contracts

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Main benefits of DLTs

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Enable parties who do not fully trust each other to form and maintain
consensus about the existence, status and evolution of a set of shared facts

The ecosystem of smart contracts

Immutability using Hashing
Blockchain data structure maintained at every peer

P1

P2 P3

P4

Block 3

Block hash:
???

Previous block:
00000090b41bx

???

Block 2

Block hash:
00000090b41bx

Previous block:
000000948fixf

Transaction
0495fjdi

Transaction
1236foer

Transaction
4364rote

Block 1

Block hash:
000000948fixf

Previous block:
000000958fdji

Transaction
1025asde

Transaction
8875iire

Transaction
4236owqe

Block 0

Block hash:
000000958fdji

Previous block:
-

Transaction
4325afde

Transaction
97875ihge

Transaction
4546ofre

Requires a Byzantine
consensus algorithm!

Client 1 Client2

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Origin: Byzantine Generals
Devised by Lamport, 1982

A distinguished process (the commander) proposes initial value (e.g.,
“attack”, “retreat”)

Other processes, the lieutenants, communicate the commander’s
value

Malicious processes can lie about the value (i.e., are faulty)

Correct processes report the truth (i.e., are correct)

Commander or lieutenants may be faulty

Consensus means

If the commander is correct, then correct processes should agree
on commander’s proposed value

If the commander is faulty, then all correct processes agree on a
value (any value, could be the faulty commander’s value!)

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

3f+1 Condition (1 failure, 4 nodes)

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

Faulty processes are shown coloured

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

P2 decides

Majority(v,v,u) = v

P4 decides

Majority(v,v,w) = v

P2 decides

Majority(u,v,w) = ┴

P3 decides

Majority(u,v,w) = ┴

P4 decides

Majority(u,v,w) = ┴

Source: Tanenbaum, Steen.

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

With Blockchains (Proof-of-Work)

p1 (Commander)

p2 p3

[1:v:n1]

[2:n2][1:v:n1]

p1 (Commander)

p2 p3

[1:v:n1]

Faulty processes are shown coloured

5m

5m

5m
[2:m2][1:w:m1]

5+5 = 10m

Idea #2:
Each process can accurately
measure the amount of time
taken by a process to create a

message. (“Magic Watch”)

Idea #1:
Each message takes exactly 5

minutes to create by any
process. (“Magic Block”)

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

P3 verifies each block
and receives them in

time.

P2 tries to forge P1’s
block and write its
own block, but it

takes too much time!

Blockchain “Cryptopuzzles”

Use of “trapdoor functions” (hash functions)
◦ Cannot reverse the function to find the input

◦ Therefore, keep trying random values (called nonce)
until you find a solution

◦ Like trying random combinations to a lock…

◦ The more computing power you have, the faster you
can solve the cryptopuzzle.

◦ “Magic blocks” are blocks with cryptopuzzles, where
everyone has the same power.

verify(nonce, data) meets some “requirements”

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Proof-of-Work Example
E.g., the challenge is:
◦ sha256sum(“data:nonce”) starts with an “0”

◦ Normally more complicated than that! (e.g., 18 zeroes)

P1 wants to send “1:v” to P2

Send “1:v:120” to p2

kzhang@grey:~$ echo "1:v:118" | sha256sum
9479038ca7543ece09f48e8c77fcea147d7561cac14058199afea18c2f323b8b
kzhang@grey:~$ echo "1:v:119" | sha256sum
79ae2bbac929112a349c2fe7f50210355f4a24683b2dd1ea8f059c9beeed7fd6
kzhang@grey:~$ echo "1:v:120" | sha256sum
002ce3a3b7092d960abf1795a89f70eb0f9ef960036e7d4620cbd3d26d34ffc8

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Proof-of-Work Example
P2 verifies “1:v:120” is correct (very quick!)

P2 wants to send “2:1:v:120” to P3

P2 sends “2:1:v:120:121”

P3 verifies “1:v:120” AND “2:1:v:120:121” are correct

If P2 wants to send “2:1:w” and fool P3, it needs to find n1 for “1:w:n1” & n2 for
“2:1:w:n1:n2”

If P3 has a way to detect that P2 is doing too much work, it can detect fraud.

kzhang@grey:~$ echo "2:1:v:120:119" | sha256sum
911ab1edf1f331ff423a45fe4c382db30a3f1cf802bb2211df53c80d5798c7ba
kzhang@grey:~$ echo "2:1:v:120:120" | sha256sum
5344a3561673b1481b9cf69493368ca408b1edef67e3f96819c5d1b36cea53ce
kzhang@grey:~$ echo "2:1:v:120:121" | sha256sum
0a908c651e9ec5374976dc8f49a3342a4a789660011551da8871a6cc123c5b57

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Bitcoin
LAYER BY LAYER

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain
Reference
Architecture
This vision diagram
encompasses all aspects
related to blockchain
technologies.

Upper layers capture
application semantics
and their
implementation.

Lower layers are
concerned with
technical system details.

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Bitcoin layers

Bitcoin Transactions

Each user possesses a
wallet identified by
public/private key pairs

Transaction A

in out 1

out 2
฿1 -> Alice

Transaction C
(by Alice)

in 1

Transaction B

in 1

out 1
฿2 -> Alice

in 2

out 1
฿2 -> Bob

out 3
฿0.1 -> _

out 2
฿0.9 -> Carol

User encrypts a new
transaction C using

the private key

Tx C must reference
unspent transactions
outputs (UTXOs) from

previous blocks equal to
the total output of tx C (3

BTC)

C contains outputs to
wallet addresses

The transaction fee is
given as reward (explained

later)

Once spent, a TXO cannot
be used again: miners

verify every transaction

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Wallets and addresses
Users require a wallet to store money
◦ This includes any user, including but not limited to miners

Wallet is authenticated and identified by public/private key
pairs
◦ Generated using ECDSA (Elliptic curve cryptography)

◦ HD wallets contains a master seed to generate more private keys

Redeeming transactions:
◦ Each TXO address is a hash of the public key of the receiver, who

signs proof with the private key

◦ Transactions do not have a “from” address, so it is impossible to
prove you are the sender

◦ Each address is designed to be single use: wallet programs will
automatically generate new addresses

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Wallet security

Losing your private key:
◦ Loss of private key means the wallet and its funds are permanently locked, as it is no

longer possible to sign proofs redeeming existing TXOs.

◦ This money is essentially lost, thereby reducing the total amount of currency in Bitcoin

◦ Trusting an online service to store your key is also risky, since there is no way to prove
that you are the rightful owner if the key is stolen or misused

◦ The most reliable solution is to store your private keys on tamper-proof hardware
wallets

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Communication in Bitcoin
Broadcast to all the network

Two primary uses
◦ Users broadcast their transactions

◦ Miners broadcasts updates to the blockchain (new blocks)

Implemented via gossiping protocol in a P2P network
◦ Not terribly efficient but has not been a bottleneck so far

Works because financial transactions are very short and their rate in
Bitcoin is far below that of credit cards

Needs to be fairly reliable for the system to work but 100 percent
reliability in message delivery is not required

◦ Users and miners need to detect message loss and retransmit messages if
needed

Message propagation should be reasonably fast
◦ Slower network quantifiably increases the risk of attacks

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Transaction Flow

Alice
(Sender)

Bob
(Receiver)

1. Bob generates and send a public key address.
2. Alice creates a transaction using this address.
3. Alice sends the new transaction to the network.
4. The transaction is broadcast using gossiping.
5. The transaction is included in a block.
6. Bob can verify the transaction is in the blockchain.
7. Bob can now sign new transactions which redeem this address.

Transaction B

in 1
Bob.Address1

out 1

Transaction A

in 1

out 1
฿1 ->

Bob.Address1

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Consensus in Bitcoin
The network needs to agree on

◦ Which recently broadcast transactions go into the blockchain

◦ In what order

The general anatomy of consensus:

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Make a proposal

Reach a consensus

Announce the decision

Tough problem
• Especially in P2P
• Dozens of impossibility

results since 1983
• Does not scale beyond

~30 participants
• Takes long time to

converge

Challenge 1: who proposes and when?
The network cannot sustain each and every user or peer
making a proposal whenever she wishes

Made worse by the proliferation of identities (Sybil attack)

Need to moderate the number of proposers and rate of
concurrent proposals
◦ While keeping them sufficiently high

Several principal solutions
◦ Proof-of-work: need to do heavy computation and show the proof of it

◦ Proof-of-stake: need to possess a sufficient amount of coins

Important optimization: propose new transactions in batches
◦ A block in Bitcoin is structured as a tree of proposed transactions

◦ With nice cryptographic properties; called a Merkle tree

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Cryptopuzzles in Bitcoin
The proposer has to find nonce, such that hash(nonce | H |
Tr1 | … | Trn) < target

Effectively has to scan the entire nonce space

target is a fraction of the hash space
◦ Every node recomputes target every 2016 blocks

◦ Such that the average time for the whole network to solve a
cryptopuzzle is 10 min

For proposer p,

The solution is fast to verify

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑏𝑙𝑜𝑐𝑘 =
10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝′𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟

Tr1

H=hash pointer
for prev block

nonce

Tr2

Trn

⋮

A block in
Bitcoin

Block 3

Proof-of-Work:
000000r9d8fjj

Previous block:
00000090b41bx

Block 2

Proof-of-Work:
00000090b41bx

Previous POW:
000000948fixf

Transaction
0495fjdi

Transaction
1236foer

Transaction
4364rote

Block 1

Proof-of-Work:
000000948fixf

Previous POW:
000000958fdji

Transaction
1025asde

Transaction
8875iire

Transaction
4236owqe

Block 0

Proof-of-Work:
000000958fdji

Previous block:
-

Transaction
4325afde

Transaction
97875ihge

Transaction
4546ofre

Proof-of-Work Mining in Bitcoin

Transaction C
Transaction D

…
Transaction N

Hash(block,nonce) <
0000000XXXXX…

Block 3
2 Hash

Tx D
Tx N
Tx C

nonce

A miner verifies and
puts transactions in a

block, finds nonce

Number of leading zeroes
(difficulty) depend on the

global hash-rate, s.t. one block
is solved per 10 minutes

The miner
attaches the

solved block to
the chain, or

stops solving if
someone else
finds a valid

block.
nonce

04934938
nonce

87465523
nonce

87874951

Transaction
D

Transaction
N

Transaction
C

nonce
79146512

Pending Transactions Pool

Pending
transactions are
propagated to

the peers
(miners)

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Challenge 2: Why propose non-empty blocks?
Two incentive mechanisms in Bitcoin
◦ Block creation reward: a block proposal creates a number

of new bitcoins and transfers them to the proposer
◦ Included as a separate transaction in the block

◦ Ensures that each proposer solves a different cryptopuzzle

◦ The only way to create new bitcoins

◦ The amount is predefined and gets halved every 210,000 blocks

◦ Predicted to go down to zero before year 2140

◦ The geometric progression totals to 21 million bitcoins

◦ The rules may change in the future

◦ Transaction inclusion fee: Alice can decide to pay a small
fee to the block creator as part of her transaction
◦ Voluntarily, there is no predefined amount

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Cryptoeconomy of Mining
Incentives give rise to the mining industry in Bitcoin
◦ Miners: cracking cryptopuzzles and listening to transaction

broadcasts

Expenses: mining rig + operating costs (electricity, cooling,
repairs)
◦ Paid in real currency

◦ Operating costs are variable

Profits: block reward + transaction fee * # of transactions in
a block
◦ Paid in Bitcoins

◦ The fee and rate of transactions are unpredictable

◦ The mean time to next block is easy to compute
◦ However, the per-miner sample is small while variations are huge

Mining pools: groups of cooperating miners

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Large-scale mining farms

K. ZHANG © 2018 38

Largest Bitcoin mining farm in NA
27.5 MWs, 200 PH/s (0.5% total)
AntMiner S9 (Bitmain): 14 TH/s, $500
Cheap hydroelectricity: 4 cents/kWh but…*

Another picture (different site)

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Front side

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

A miner broadcasts the proposed block
◦ The block includes a hash to the latest block known to the miner

When a peer receives a proposed block
◦ Check that the proof of cryptopuzzle solution is valid

◦ Check that each transaction is valid (business logic)

◦ If the hash pointer is valid, append the new block to the local copy of the blockchain

◦ Conflict resolution: if the proposed chain is longer than the current local copy, replace
the local copy

Local copies may diverge!
◦ Lost messages and concurrent blocks arriving in reverse order

◦ The probability depends on the network

Probabilistic convergence over time is proven when using the longest chain for
conflict resolution

◦ The probability of a block being non-final decreases exponentially with the number of
later blocks stored in the chain

◦ The standard client sends a confirmation after six later blocks stored in the chain

◦ Takes an order of one hour in practice

Reaching consensus in Bitcoin

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Branching

Common Blockchain

Block 2

Proof-of-Work:
00000090b41bx

Previous POW:
000000948fixf

Block 1

Proof-of-Work:
000000948fixf

Previous POW:
000000958fdji

Block 0

Proof-of-Work:
000000958fdji

Previous block:
-

nonce

Branch 1

Transactions
…

nonce

Transactions
…

nonce

Transactions
…

Block 3

Proof-of-Work:
0000009ff33xe

Previous POW:
00000090b41bx

nonce

Transactions
…

Block 4

Proof-of-Work:
000000zzzbbf4

Previous POW:
0000009ff33xe

Block 5

Proof-of-Work:
000000f32367x

Previous POW:
000000zzzbbf4

nonce

Transactions
…

nonce

Transactions
…

Branch 2

Block 3

Proof-of-Work:
000000hhjg93g

Previous POW:
00000090b41bx

nonce

Transactions
…

Block 4

Proof-of-Work:
???

Previous POW:
000000hhjg93g

nonce

Transactions
…

Due to variance, one
branch will find a block
faster than the other

Here, two blocks 3 are
solved at the same time
by different miners (very

rare occurrence)

When miners receive a
valid block from a longer
branch, they throw away

their own branch
(txs are reverted)

Due to network delays,
different miners begin

working on their version
of block 3

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Data Structure within a Block

To avoid hashing the entire block data when computing
PoW, only the root hash of the Merkle tree is included.

 For users without a full copy of the blockchain, simple
payment verification (SPV) is used to verify if a specific
transaction exists.
 A Merkle proof only requires the transaction itself, block root

hash, and all of the hashes going up along the path from the
transaction to the root, e.g., Hash01, Hash2 (for Tx3).

 Spent transactions can be pruned in the local copy, leaving
only the necessary intermediate nodes to save space.
 E.g., if both Tx0 and Tx1 are spent, we can prune everything

under Hash01

Merkle Tree

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Data manipulation and queries
Reading the ledger and verifying its correctness is straightforward but
time-consuming

◦ Publicly available, no access control whatsoever

◦ A copy is held by many users (over 10,000 today)

◦ Users are encouraged to download and run a verification

Transparency is a boon for data integrity but a bane for privacy
◦ Public keys are used as user identities

◦ A key can serve as a pseudonym, difficult to link to real identity

◦ A user can use a different pseudonym for each transaction

◦ The main threat comes from analyzing the history of transactions and linking
them together

Temper-resistance is mostly a blessing
◦ But also a curse: difficult to compact or prune the history

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Size of ledger

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Business logic in Bitcoin
The output additionally includes a verification script
◦ representing the conditions under which the output can be

redeemed, i.e., included as an input in a later transaction

◦ A typical script: “can be redeemed by a public key that hashes to X,
along with a signature from the key owner”

There is also a redeeming script attached to the input

Both scripts are executed by whoever verifies the
redeeming transaction, such as a proposer

A script language with an order of 200 commands
◦ Support for cryptographic primitives

◦ Rather ad-hoc

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Redeem a UTXO (P2PKH)

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

pubKeyHash

pubKey
sig

Bitcoin Script and P2PKH example

Stack (top: to the right) Script Description

Empty.
<sig> <pubKey> OP_DUP OP_HASH160
<pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Script = scriptSig.append(scriptPubKey)

<sig> <pubKey>
OP_DUP OP_HASH160 <pubKeyHash>
OP_EQUALVERIFY OP_CHECKSIG

Add sig and pubKey to the stack

<sig> <pubKey> <pubKey>
OP_HASH160 <pubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

Copy top element of the stack

<sig> <pubKey> <pubHashA> <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG Hash the top element

<sig> <pubKey> <pubHashA> <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG Add pubKeyHash to the stack

<sig> <pubKey> OP_CHECKSIG Verify both elements are equal (using ECDSA)

true Empty.
Verify first element is a signature of second
element

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG (Script of output)
scriptSig: <sig> <pubKey> (Script of input)

Example illustration of P2PKH

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Other examples

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

scriptPubKey: <expiry time> OP_CHECKLOCKTIMEVERIFY OP_DROP OP_DUP

OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

scriptSig: <sig> <pubKey>

Freezing funds for a period of time

scriptPubKey: (empty)

scriptSig: OP_TRUE

UTXO free to claim

scriptPubKey: OP_HASH256 6fe21b3….0000000000 OP_EQUAL

scriptSig : X, such that hash256(X) = 6fe…00000

Transaction Puzzle

http://learnmeabitcoin.com/glossary/script

scriptPubKey: OP_ADD OP_8 OP_EQUAL

scriptSig: OP_3 OP_5 (or…)

scriptPubKey: OP_4 OP_5 OP_EQUAL

scriptSig: Impossible!

Proof-of-BurnChallenge

scriptPubKey: OP_RETURN PUSHDATA(N) <Data>

scriptSig: Impossible!

Data storage

P2SH Addresses

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Address generation P2SH

redeemScript: <OP_2> <A pubkey> <B pubkey> <C pubkey> <OP_3> OP_CHECKMULTISIG

scriptPubKey: OP_HASH160 <Hash160(redeemScript)> OP_EQUAL

(scriptSig is added to scriptPubKey in serialized form)

scriptSig: OP_0 <A sig> <C sig> redeemScript (must evaluate to true on its own)

Multi-Signature 2-of-3 (P2SH)

Preventing double spending
Transaction A

฿1 ->
Merchant 1

Transaction B
฿1 ->

Merchant 2

A malicious attacker creates two transactions
using the same money (double-spending)

Block N
A

Block N+1
…

Block N+2
…

Block N+3
…

Suppose A is added to block N, and
merchant 1 confirms the transaction
after waiting for a few blocks

Block N
B

Block N+1
…

Block N+2
…

Block N+3
…

Block N+4
…

Attacker chain

Real chain

It must replace A with B in N,
and solve the modified
puzzles for the blocks faster
than the real chain grows so
that it can become longer

• The “Magic Watch” is the continuous generation of
blocks in the main chain which limits the amount of
time an attacker has to create its own chain.

• If the attacker owns >51% of the power in the network,
the “Magic Watch” gives enough time to the attacker to
tamper the data!

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

(51% Attack)

Other attacks (cursory)
Stealing bitcoins is hard because of digital signatures

◦ If, however, someone accumulates a lot of bitcoins, it becomes a prime
target

Denial-of-service on the entire Bitcoin network is hard because of
proof-of-work

◦ Still possible to bombard the network with invalid transactions

Starving a specific user: does not work if there is a sufficient number of
honest miners

◦ Possibility to blackmail users with high tx fees if miners are “rational”

◦ cf. feather forking attacks

Economic attacks: selfish mining
◦ Attempts to maintain private branches longer than the public branch

◦ Releasing a longer private branch causes honest miners to lose revenue,
“stolen” by the attacker

◦ 25% attack with “rational” miners

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Limitations of Bitcoin
Limited expressiveness
◦ Cryptocurrency only

◦ Each app requires new platform
(e.g. NameCoin, PrimeCoin,
CureCoin)

Slow block time (10 mins)
◦ Also slow confirmation time (1+

hour for 6 confirmations)

Hard/Soft forks
◦ Updates to the code cause forks

◦ Hard forks are not compatible

◦ Duplicated money

◦ Bitcoin: Cash, Classic, Gold

Slow transaction rate
◦ 7 transactions/second

◦ VISA Network: 2000 tps (average)

◦ Limited block size
(Segwit2x: 1MB -> 2MB)

Weaknesses of proof-of-work
◦ Environmental impact: ~1000x more

energy than credit card

◦ Currently 43th in energy consumption
(comparable to Switzerland)

Long bootstrap time for a miner
◦ Full ledger: 164 GB (2018/04)

◦ CPU/IO cost to verify each
transaction/block

◦ Takes hours/days

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Bitcoin vs. VISA

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

blockexplorer.com

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain
Systems
ETHEREUM

HYPERLEDGER

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Managing entity: Ethereum Foundation
◦ Major players: Deloitte, Toyota, Microsoft, …

Focus: Open-source, flexible, platform
◦ Cryptocurrency: 1 Ether = 1e18 Wei (502 USD, 2018/04)
◦ Smart contracts: Solidity, Remix (Web IDE), Truffle (Dev./Test), Vyper
◦ Ethereum Virtual Machine (EVM), Ethereum Web Assembly (eWASM)
◦ Permisionless (public) ledger: Proof-of-Work, Proof-of-Stake (Casper)

Notes
◦ DOA Event: $150 million lost, hard forked into Eth. Classic
◦ GHOST Protocol: Merging of branches
◦ Ethash: Memory-hard hashing protocol which is ASIC-resistant
◦ Scalability: L1 Sharding and L2 Plasma

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Evolution in business logic
Proliferation of Bitcoin spawn-offs
◦ Digital currency is not the only electronic object of value

◦ Documents: authorizations, legal, diploma, design, various deliverables

◦ Software

◦ Support for extended financial applications such as
crowdfunding

◦ Support for multi-party escrow transactions

Ethereum envisioned that a single platform
supporting the above is better than hundreds of
specialized systems
◦ Provided a verifiable Turing-complete script language

◦ With script templates

◦ Scripts can be stateful, with a state stored on the chain

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Benefits of smart contracts
Compared to a human intermediary
◦ Cheaper

◦ Open and transparent program that fulfils the contract
and does nothing else
◦ Does not peek into your data

◦ Highly resistance to attacks

Compared to distributed databases
◦ Rule-based rather than data-based

◦ Rich language and (relative) easy of development

◦ The collection of rules is transparent and reusable

◦ May initiate and play an active role in the communication

◦ May integrate and fuse data from multiple sources

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Block 4

Proof-of-Work:
000000r9d8fjj

Previous block:
00000090b41bx

Block 3

Proof-of-Work:
00000090b41bx

Previous POW:
000000948fixf

Contract
102890h

Transaction
1236foer

Transaction
4364rote

Smart Contracts

nonce
87874951

Transaction
D

Transaction
N

Transaction
C

nonce
79146512

Chainstate
Database

Wallet ID Held Titles

99823428347 34356,324324

98217981623 677343,4444

90987344755 994,38842,439

- Contracts contain executable bytecode
- Created with a blockchain tx
- Contracts have internal storage

Contracts execute when triggered by a
transaction (or by another contract)
Execution time is limited by gas
Example: Land registry

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Account State (“World State”)

Chainstate
Database

Wallet ID Balance Code Hash Internal State

99823428347 45.12 - 99554HGJ

98217981623 1123.332 9ERU12T4 3453ADFG

90987344755 9.3444 0490CNDJ 132GJR4

Merkle Patricia Tree

Contract
account

Externally
controlled
account

…

… …

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Execution and Mining

Block 4

Proof-of-Work:
000000r9d8fjj

Previous block:
00000090b41bx

Transaction
Trie

State Trie
Root Hash

Receipts
Trie Root

Hash

Contains all
transactions in the
block structured as

a Merkle Tree

Transaction C
(by Alice)

• Inputs
• Outputs
• Gas limit
• Gas price

Transaction fee =
max(gas_limit,

gasUsed) x gasPrice
Root Hash of the Merkle Patricia

Tree after txs are applied

Log the outcome of each
transaction externally

Chainstate
Database

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Ethereum Virtual Machine

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Gas calculation

https://github.com/djrtwo/evm-opcode-gas-costs/blob/master/

Each OPCODE costs a different amount

The usage of each type of storage is measured
◦ Persistant storage is extremely expensive (SSTORE): 20K gas = 256 bits

◦ Memory is volatile (MSTORE)

◦ Stack is almost free, but very limited (cf. Bitcoin)

Compiler optimizes the bytecode based on the Solidity code written
◦ Important to use the right keywords to allow the compiler to optimize

properly! (c.f. last session)

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Comparison with Bitcoin
Bitcoin Ethereum

Transactions Transfer of bitcoins Contract creation, transfer
of ether, contract calls,
internal transactions

Accounts User wallets Externally owned accounts,
contract accounts

Transaction fees Amount specified by sender Gas calculated using
sender’s values

Block content Transactions trie Transactions, State Root
Hash, Receipts Root Hash

Chainstate Database World state:
UTXOs for wallets

World state, receipts,
bytecodes for contracts

Querying Simple Payment Verification Merkle proofs for events,
transactions, balance, etc.

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Managing entity: Hyperledger Consortium
◦ Major players: IBM, NEC, Intel, R3, …

Focus: Enterprise blockchains
◦ Permissioned ledger (private/consortium network)
◦ Smart contracts
◦ Open-source
◦ World state on CouchDB/LevelDB, event listener

Projects
◦ Fabric: Execute-Order-Validate transaction processing
◦ Sawtooth: Proof-of-Elapsed-Time (using Intel SGX)
◦ Composer: Smart contract language and development tool
◦ Cello: Blockchain-as-a-Service framework
◦ R3 Corda: Financial applications

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Fabric: Transaction processing flow

Committing
Peer

Committing
Peer

Committing
Peer

Orderer
Next
Block

Endorsing
Peer

Endorsing
Peer

Endorsing
Policy

Client

1. Client sends transaction, receives
endorsements with RW sets.

2. Client sends the endorsed
transaction to the orderer.

3. Orderer sends completed block
according to block size and time limit.

4. Validation peers compare and
apply the RW set with the current
state, aborting stale txs.

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Ethereum 2.0

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

fuseelab.github.io

Integration of Casper Consensus with Legacy Chain

Legacy Chain (PoW GHOST) Beacon Chain (PoS Casper)
Block time: 10-20s Block time: 6s

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

The beacon chain is maintained by validators registered in a validator set

• Stake deposit of 1-32 ETH into a contract on the 1.0 legacy chain

“Finality Gadget” allows for legacy chain blocks to be finalized: cannot be reverted

• A stronger form of the “confirmation wait” mechanism used in 1.0 or Bitcoin

• Allows for data to be pruned beyond the latest finalized block

• Point of no return assuming 2/3 honest validators

Details on Casper Consensus

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Validator Registration

Beacon Chain (PoS Casper)

Participates in

the consensus

Validators Set

V V V
V

V V V V

V
V V

V

Legacy Chain (PoW GHOST)

Onboarding by depositing a stake in 1.0 deposit contract

(1 to 32 ETH)

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Beacon chain progresses through epochs

• Each epoch has 64 slots, each slot last 6 seconds

• Model assumes validators clocks are synchronized within 6s

During an epoch boundary, execute a deterministic state transition function:

• A random number generator seed is chosen (using RANDAO as

randomness source)

• The validator set is randomly shuffled into committees and proposers, and

assigned to slots

• Each committee size may vary but generally aims to have 256 attestators

Epoch State Transition

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Each slot:

• has at least 1 committee, up to 16

• has a proposer chosen from the validator set

Each proposer:

• Will try to propose one beacon chain block, attached to its known head of

the beacon chain

• Will collect attestations from each committee assigned to previous slots

Slots and Proposers

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Beacon Chain Details

Beacon Chain (PoS)

Slot 1

Slot 2

Slot …

Slot 64

Epoch Boundary

A A A

P

A A A

P

A A A

P

During an epoch transition

Shuffled using RANDAO

V

V V

VV

V

V

V

V

V
V

V

Committees

P

Attestation

Slot time: 6s

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Each attestator publishes an attestation when during its slot time:

• The attestation records the latest block(s) perceived by the attestator at the time

• Contains a history up to the last known finalized block

Attestations are collected by proposers in future slots

• Minimum delay to respect is 4 slots (24 seconds)

Proposer aggregates received attestations and put them in its beacon chain block

Attestations

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Block properties (evaluated during epoch transitions):

• A block is justified if it has 2/3rd stake of attestations of the

entire validating set

• A block is finalized if it has 64 justified children (64 consecutive

justified blocks)

• Once finalized, the attached legacy block is also finalized

• The data contained in that legacy block cannot be reverted

Justifications and Finality

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Finalization example
Beacon Chain (PoS)

Slot 1

Slot 2

Slot …

Slot 64

A A A

P

A A A

P

A A A

P

Committees

P

Attestation

Justified after 2/3rd stake

(best case)

Finalized after 2/3rd stake twice

(best case)Attests this block

Legacy Chain

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Due to network partitions, latency, crash and byzantine failures, etc…:

• Possible that a slot does not have a block

• Possible that several beacon blocks reference the same parent, causing a fork

Validator use IMD-GHOST to choose the correct fork:

• Immediate Message Driven Greedy Heaviest Subtree (IMD-GHOST)

• Measures closest proximity to justification for each subtree

Adoption by honest participants with 2/3 stake to provide probable liveness

• Blocks will continue to be justified and validated

Consensus: Fork Choice Rule

Backup Slide

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Reward function applied during epoch state transition:

• Target: 12% to 15% interest rate on your deposit per year (for optimal case)

• Non participation (did not publish attestation or did not propose block) punished by

slashing stake

• Payout is based on participation rate for that cycle (% of validators who were active)

• Gain rewards for attesting, justifying, and finalizing blocks

This incentive structure is resilient to denial attacks

• Proposers will not omit attestations as it decreases its own payout

• Attestators will not withhold attestations as they may get slashed

Rewards for Participating in Casper FFG

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Goal: Replace legacy chain with multiple shard chains, in order add parallelism for

transaction processing

Partition the world state into disjoint shards:

• Each shard chain processes transactions independently for its share of the state

• Execute smart contracts for that partition

• Allow us to obtain > global capacity

• Limited cross-shard communication possible (future work to improve it)

How to leverage Casper FFG and the Beacon Chain to finalize shard blocks?

Layer 1 Scalability: Sharding with Casper FFG

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Each committee is assigned to a shard during an epoch

• Determined randomly at the state transition (using RANDAO)

Current design: 1024 shards

• Ideally, 16 committees per slot, so that each shard is included in each epoch

Crosslink between a shard block and a beacon block:

• Each attestation references a specific shard block in the committee shard

• 2/3 of committee attested to the same shard block: Cross-link created with beacon block

Shard block finality

• A beacon block is finalized which contains the crosslink to the shard block

Crosslinks + Casper Consensus

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Crosslink Example
Beacon Chain (PoS)

Slot 1

Slot 2

Slot …

Slot 64

A A A

P

P

P

Committee for 1024

P

Attests this block

Shard 1024 Chain

Attests this block

Crosslink if 2/3 attestations in this committee

When this beacon block

becomes finalized, the

crosslink will allow the

corresponding shard block

to be finalized as well

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

 Shard fork-choice rule depends on Beacon chain

 IMD-GHOST starting from last finalized cross-link

Ethereum 2.0

Consensus: Shard Fork choice rule

fuseelab.github.io

Each shard block references a beacon chain block to

reference the RNG of the beacon chain

Cross-shard communication: asynchronously through cross-

links

Could be realized through events emitted are perceived in

another shard at the next CSC opportunity

More work is needed to make it faster

Cross-shard communication

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Overview of

Delayed State Execution

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

How to propose blocks in a shard?

How to choose the order of transactions?

How to execute the transactions and transition the state of the shard?

Our proposed solution: Delayed state execution

• Original idea by Vitalik Buterin

• We designed a working solution under the current 2.0 specifications

• Solves the Data Availability Problem

Unaddressed Questions in the Specifications

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Main idea: separate transaction execution (state storage) / block ordering / transaction storage

• Transactions within a block won’t be fully processed until two blocks later!

• Each block pipelines information about transactions who are at various stages

Role of an executor node:

• Executors must be onboarded with a stake deposit

• Randomly assigned to a shard, but infrequently reshuffled (once every 3 days)

• This slow churn allows sufficient time to synchronize shard data and mitigate overhead

Validator committee for a shard:

• Chosen from validators not in a Casper committee at that slot

 Contains a proposer, who receives transactions and ordered lists from executors

 Contains attestators, who will provide Proof-of-Custody (invented by Justin Drake)

Delayed State Execution: Overview

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

DSE: Overview

Contains final transaction order,

aggregated from executors’ suggestions

Attestations contain Proofs of Custody

that committee will keep transaction data

from SB1 for 1 month

State root claims contain final state root

hash for SB1, in case of conflict, request

witness data and slash offenders

(Different from beacon committee!)

Executors (collaterized)

Executors are shuffled every 3 days

Committee shuffled every slot

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

In the next block n+1:

• The rest of the validator committee attest the content of this block

• The attestation contains a Proof-of-Custody (invented by Justin Drake)

• The validator committee promises to keep the transactions in this block available for 1 month

• Can be challenged to demonstrate availability

• Attestations about block n are stored in block n+1

In the next next block n+2:

• Executors read the transaction order from block n and verify attestations from block n+1

• Executors calculate the final state of the trie by executing transactions in block n with the order written

• Executors send a state root claim to the proposer

• State root claims about block n are stored in block n+2

Conflicting claims:

• Validators request witness data and execute transactions Malicious executor(s) slashed

Delayed State Execution: Overview (ii)

Zhang, Vitenberg, Jacobsen, Sadoghi, Tabatabaei © 2018

fuseelab.github.io

Initially Unavailable Data

 Requires attacker to have 100% control over at least one attestation committee

 Requires attacker to have almost 100% of entire validator set

 Breaks 2/3 honesty assumption and is more difficult than consensus failure

Lost Data

 Attacker bribes entire executor set to delete state data

 State data from last month can be reconstructed through validators

 Only targeted attack vector against old and infrequently accessed state

 Requires victim to stay offline for a month or not store its own data (negligence)

Properties of our Proposed Approach

Economic Safety: Data Availability

fuseelab.github.io

 RANDAO

• Distributed Random Number Generator (RNG)

• Generates global entropy by combining local entropies

• Hash Onions from every validator as local entropy sources

 BLS Signature Aggregation

• Elliptic Curve Cryptography based on Gap Groups

• Constant-size aggregated signatures for n signers

• Efficient aggregation and verification of aggregate signatures

Ethereum 2.0

Supporting Technologies

fuseelab.github.io

Ethereum 2.0

Supporting Technologies: RANDAO

Figure: Hash Onion

Backup Slide

Blockchain
Insights
BENEFITS AND CHALLENGES

TAXONOMY OF BLOCKCHAINS

RESEARCH OPPORTUNITIES

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

New challenges introduced by DLTs
Compared to databases
◦ Slower

◦ Lower rate of transactions

◦ Less compact storage

The technology and even standards (and even terminology)
are still developing

Additional challenges related to smart contracts
◦ Bug prone, no established programming or verification practices

◦ State machine execution, with each contract replica performing
every action

◦ If a contracts interacts with an external non-blockchain service, this
service needs to be designed with this in mind

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Versatility and potential

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

ZHANG, JACOBSEN © 2018 103

Are multiple
parties

involved?
Start

In a non-federated environment,
logically centralised databases are
preferable. (e.g. Google Bigtable,

Facebook Cassandra)

Yes
Is it cost-

effective to
use a trusted
third party?

No Yes
The TTP manages a

centralized database as an
authoritative data source. The
TTP is responsible for ensuring

the reliability of the data.

Are all the
parties known

in advance?

No

Use a permissionless
blockchain: anyone
can join as a miner

Yes

Do the parties
trust each

other?

No

Is the data
publicly

accessible?

Use a public-facing,
permissioned

network

Use a business-facing,
permissioned network Yes

Each party can maintain
separate copies of the data.

Inconsistencies can be
tolerated or repaired.

Yes

No

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Taxonomy

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

A related feature is if authentication is required

The above is well defined, but has no common terminology
associated with it

Journalists use other terms instead: open/closed,
permissioned/permissionless, public/private

Decentralization: centralized, large-scale decentralized, and
consortium blockchains

Anyone can read Read access restricted

Anyone can propose updates Bitcoin, Ethereum Ethereum (Smart
Contracts)

Update access restricted Ripple Hyperledger, Corda

“CAP Theorem” for DLTs

Scalability
• High throughput
• Low latency
• Compact ledger state

Consistency
• Consensus
• Fork reconciliation
• Attack resilience

Decentralization
• Public network
• Cryptoeconomy
• Anonymity

“Choose 2 out of 3!”
Bitcoin: DC
Hyperledger: CS
Ethereum: DC(S?!)

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

DCS Conjecture

#Matinno – Research Angles

“Choose” 2
out of 3!

Decentralization

Consistency

Scalability

Bitcoin: DC
Hyperledger: CS
Ethereum: DC(S?!)

Incentives, mining rewards
Privacy: Anonymity, fungibility

Endorsement policies, governance
Selective replication: State channels

Safe and verifiable smart contracts
Attacker models: <51% attacks

Security of off-chain services (e.g. exchanges)
“Garbage in, garbage out”: IoT barrier

Sharding, sidechains, tree-chains, …
Large-scale chainstate storage

Big Data analytics
Layer 2 Network: Lightning, Raiden

Proof-of-Stake, POET, PBFT, …

Investigate potential use cases
Choose and tune the right platform
Develop reusable middleware

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

ZHANG, JACOBSEN © 2018 107

 DCS: May lead to fundamental research

 Applications: mostly 3.0, and some 2.0

 Layers: application, modeling, contract

Applicability of
blockchains

 Applications: 1.0 – off-chain exchanges and payment
networks, 2.0 – reusable online services, 3.0 – data
integration, analytics

 Layers: contract

Blockchain
middleware

 DCS: +DC, -S
 Applications: 1.0 –transactions, 2.0 – smart contracts,

3.0 – data privacy

 Layers: contract, system, data, (network)

Security and
privacy

 DCS: +S, -DC
 Applications: 1.0 – incremental, 2.0 – public smart

contracts, 3.0 – clean slate designs

 Layers: system (consensus), data

Scalable
system

innovations
ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain 1.0: Currency

Over 13700 public cryptocurrencies available!

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Research for 1.0 Apps
Formally analyze the security model of Bitcoin
◦ 51% attack

◦ DoS attacks on: mining pools, currency exchanges, …

Conduct performance modelling
◦ Simulate various Bitcoin scenarios

◦ Understand impact of network topologies (e.g. partitions)

Develop scalable mechanisms with legacy support
to maintain the sustainability of Bitcoin
◦ SegWit2x

◦ Bitcoin-NG (NSDI ‘16)

◦ Off-chain (Lightning network)

◦ Algorand (SOSP ‘17)

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain 2.0: Decentralized Apps
ÐApps are applications built on
blockchain platforms using
smart contracts (e.g. Ethereum)

Charity donation paymentCrowdfunding

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Forecast market (e.g. betting, insurance)

Research for 2.0 Apps
Formal verify smart contracts, detect and repair
security flaws
◦ Ethereum Viper

Develop scalable consensus mechanisms which
support smart contracts in an public network (w/
incentives)
◦ Proof-of-Stake (Casper)
◦ Side-chain (Plasma)
◦ Sharding (ShardSpace)

Develop efficient data storage techniques to store
smart contracts and the chainstate
◦ AVL+ (Tendermint)
◦ Merkle Patricia Trees (Ethereum)
◦ Zero-Knowledge Proofs: zk-SNARK

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain 3.0: Pervasive Apps

Diamonds Provenance

Applications
involve entire

industries,
public sector,

and IoT.

Land Registry in Honduras

Electronic Health Records Transparent Voting System

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Research for 3.0 Apps
Develop “clean-slate” scalable distributed ledgers:
◦ Permissioned ledgers (Hyperledger Fabric)

◦ Blockless DLTs (IOTA Tangles, R3 Corda Notaries, Hashgraph)

Develop blockchain modelling tools and middleware
◦ BPMN, Business Artifacts with Lifecycles, FSM

◦ Authentication, reputation, auction, voting, etc.

Support strict governance, security, and privacy
requirements
◦ State channels

◦ Endorsement policies

Overcome the cyber-physical barrier for data entry:
◦ Object fingerprinting

◦ Secure hardware sensors

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

HyperPubSub: A
Decentralized, Permissioned,
Publish/Subscribe Service
using Blockchains
ONGOING RESEARCH

NEJC ZUPAN

KAIWEN ZHANG

HANS-ARNO JACOBSEN

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Motivation: Federated Messaging

Organization C

Organization B

Organization A

Broker 1 Broker 2

Broker 3

Publisher Subscriber

Subscriber Subscriber

Publisher Publisher

SubscriberSubscriber

Subscriber Subscriber

Publisher

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

padres.msrg.org

Use cases

Trusted communication in federated systems:
Allow for cross-organizational communication
which tolerates Byzantine failures.

Client-driven auditing: Allow clients to obtain a
trail of messages sent and received, to ensure
complete publication delivery and data verification

Data marketplace: Publication delivery can be
monetized; publishers can verify accurate payment
for all deliveries, while subscribers can verify
correct billing for received messages

ZHANG, JACOBSEN © 2018

HyperPubSub
Hyperledger Fabric (1.0)-based pub/sub system:

◦ Modular pub/sub component: currently Kafka (topic-based)

◦ Out-of-band matching logic: async. Composer chaincode to
minimize overhead during online pub/sub operations

◦ Privacy-preserving pub/sub: Access control, authentification

◦ Asynchronous client API: Auditing past history

Web demo (using Playground) for publishers and subscribers to:
◦ Check for complete delivery

◦ Validate consumed data

◦ Verify system status

Diverse language support: gRPC (Protobuf) connectors

ZHANG, JACOBSEN © 2018

HyperPubSub Architecture

ZHANG, JACOBSEN © 2018

Pub/Sub Protocols

ZHANG, JACOBSEN © 2018

Participants and Assets
Participants:

◦ Publisher

◦ Subscriber

Transactions:
◦ Publish

◦ Subscribe

◦ Register

Created during publish:
visible to matching

publisher and subscribers,
contains publication hash

Created during publish:
exposes number of matching
subs (but not their identity),

for monetization

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Participants and Assets

List of topics with
subscribers, used by the
smart contract for topic-

based matching

Visible to the publisher, to
audit publication history

Visible to the subscriber, to
audit publication history

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Demo Interface (Playground)

ZHANG, JACOBSEN © 2018

Multi-Version Concurrency Control

Committing
Peer

Committing
Peer

Committing
Peer

Orderer
Next
Block

Endorsing
Peer

Endorsing
Peer

Endorsing
Policy

Client 1. Client sends transaction, receives
endorsements with RW sets.

2. Client sends the endorsed
transaction to the orderer.

3. Orderer sends completed block
according to block size and time limit.

4. Validation peers execute txs by
comparing the RW set with the
current state, aborting stale txs.

ZHANG, JACOBSEN © 2018

The use of shared lists triggers transactions aborts, reducing
effective throughput of Hyperledger Fabric.

Future work: How to optimize Fabric (esp. Orderer) to
reduce false positives or limit conflicts?

Conclusions
 Blockchains provide decentralized

storage and code execution, and
can be used to combat fraud,
avoid redundancy, and provide
transparency.

 Blockchains rely on cryptography
and massive replication using a
robust consensus mechanism.

 Blockchains are useful for a wide
variety of applications, ranging
from cryptocurrency (1.0) to
health (3.0).

 Research directions exist across
the six layers for all kinds of
applications (from 1.0 to 3.0), and
involves different tradeoffs in the
DCS spectrum: Decentralization,
Consistency, Scalability.

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Link to our companion papers:
http://msrg.org/papers/bcbi-tr
http://heim.ifi.uio.no/~romanvi/debunking-bc-myths.pdf

http://msrg.org/papers/bcbi-tr
http://heim.ifi.uio.no/~romanvi/debunking-bc-myths.pdf

Bonus Material
APPENDIX

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Public Key Cryptography

Recipient's public key is
used to encrypt the
plaintext to ciphertext

Recipient's private key
to decrypt the ciphertext
to original plaintext

No one can use the
public key to decrypt the
ciphertext to plaintext

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

(Asymmetrical Cryptography)

Proof-of-Stake
PeerCoin

Nxt

Ethereum (Future)

“Nothing at stake” problem

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Proof-of-Stake Details
verify() function in PoS:

◦ sha256(PREVHASH + ADDRESS + TS) <= 2^256 * BALANCE /
DIFFICULTY

◦ ADDRESS of wallet of the miner, BALANCE is the recorded stake for
the wallet

◦ TS is the timestamp in UNIX time (seconds)

◦ Thus, only one hash needed per second (per wallet)

Branches can still exist in PoS:

◦ Due to propagation delays, multiple timestamps are valid for a block

◦ The puzzle function does not return an unique winner

Nothing-at-Stake problem:

◦ PoW: cannot mine parallel branches since splitting resources is not
effective

◦ PoS: mining parallel branches is easy since it only requires 1 hash/s

◦ Slasher algorithm: detection of parallel mining confiscates the stake

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Scalability: Tree Chain - GHOST

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Scalability: Off-Chain

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Scalability: Sidechain

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Scalability: Sharding

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain
Platform
REFERENCE ARCHITECTURE

RESEARCH DIRECTIONS

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Blockchain
Reference
Architecture
This vision diagram
encompasses all aspects
related to blockchain
technologies.

Upper layers capture
application semantics
and their
implementation.

Lower layers are
concerned with
technical system details.

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Application Layer
Potential Research Directions

◦ Identify application and service characteristics that
benefit from a Blockchain-based approach
◦ cf. “Do you need a blockchain?” paper

◦ Develop a methodology to evaluate potential applications
and select the appropriate optimized blockchain system:
◦ Position applications as Blockchain 1.0, 2.0, or 3.0

◦ Create a standard template to describe and articulate use
cases:
◦ Describe actors, assets, transactions, queries, functional

requirements, SLAs, etc.

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Modelling Layer
Potential Research Directions

◦ Identify higher-level modelling and “programming”
abstractions that are useable by business analysts, that
are verifiable, that offer guarantees to end-users and map
these abstractions into lower layers
◦ BPMN, Petri-Nets, FSM, Business artifacts with lifecycles

◦ Identify common services and design blockchain
middleware to support a variety of use cases
◦ Identity management (authentication), reputation, risk analysis

(spot checks), auditing, bidding, zero-knowledge proofs, document
input etc.

◦ Extend modelling languages using blockchain semantics
◦ FSM+: States can be described as “on-chain” or “off-chain”

◦ Use of Controlled English which is portable to smart contracts

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Smart Contract/Programming Layer
Potential Research Directions

◦ Design mappings for standard modelling languages (e.g.,
BPMN) into smart contracts
◦ Create execution engines on blockchains for BPM

◦ Formally verify smart contracts for correctness
◦ Use of formal verification tools (e.g., Why3, F*)

◦ Investigate the use of domain-specific languages for
smart contracts
◦ E.g., to circumvent the halting problem

◦ Scalable execution and storage of smart contracts
◦ E.g., Sharding in Plasma, zk-SNARKS in Zcash

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

System Layer
Potential Research Directions

◦ Evaluate existing consensus algorithms and design new
ones specifically tailored to application characteristics
with varying tradeoff:
◦ Proof-of-Stake, Practical Byzantine Fault-Tolerance (PBFT), …

◦ Develop mechanisms to increase the scalability of
blockchains:
◦ Off-chain, side-chains, tree-chains (GHOST), sharding

◦ Use of innovative hardware for achieving consensus
◦ Proof-of-Elapsed-Time using Intel SGX (Hyperledger Sawtooth)

◦ Develop quantum-resistant mechanisms for securing
Blockchain computations

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Data Layer
Potential Research Directions

◦ Develop effective data management abstractions to
enable efficient Blockchain computations and verification
◦ AVL+ Trees, Merkle Patricia Trees

◦ Develop compression techniques to reduce the size of
historical data and scale with the number of users
◦ Ethereum Fast Sync

◦ Provide off-chain storage (chain state) which is securely
and privately verifiable by the on-chain data, executable
by the smart contracts

◦ Maintain availability of smart contracts and assets in the
presence of space saving techniques

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

Network Layer
Potential Research Directions

◦ Develop effective networking abstractions to support
scalable and low-latency blockchain operations

◦ Investigate effects of networking characteristics on
Blockchain computations (e.g. network partitions)

◦ Integrate with Software-Defined Networking (SDN) and
other technologies

◦ Tolerate unreliability in hardware components (IoT, Edge
Computing)

◦ Support cross-platform communication (e.g. private &
public networks)

ZHANG, VITENBERG, JACOBSEN,
SADOGHI, TABATABAEI © 2018

