
1/9

ByShard: Sharding in a Byzantine Environment

Jelle Hellings1,2
Mohammad Sadoghi

1

1
Exploratory Systems Lab

Department of Computer Science

University of California, Davis

Creativity Unfolded
ExpoLab

2
Department of Computing and So�ware

McMaster University

2/9

Motivation: High-performance resilient system

System

(All Data)

Requests

(All Data)

r1 r2

r3 r4

=⇒

f1 f2

f3 f4

(African Data)

m1 m2

m3 m4

(American Data)

s1 s2

s3 s4

(Asian Data)

e1 e2

e3 e4

(European Data)

Requests

(African Data)

Requests

(American Data)

Requests

(Asian Data)

Requests

(European Data)

Requests

(Mixed Data)

2/9

Motivation: High-performance resilient system

System

(All Data)

Requests

(All Data)

r1 r2

r3 r4

=⇒

f1 f2

f3 f4

(African Data)

m1 m2

m3 m4

(American Data)

s1 s2

s3 s4

(Asian Data)

e1 e2

e3 e4

(European Data)

Requests

(African Data)

Requests

(American Data)

Requests

(Asian Data)

Requests

(European Data)

Requests

(Mixed Data)

3/9

Ingredients of sharding and fault-tolerance

Multi-shard transaction execution of g

Replication of g among shards: two-phase commit.

Concurrency control to guarantee consistent execution of g : two-phase locking.

One needs computations within a shard and communication between shards.

Fault-tolerant shards

Each shard is a cluster of replicas that can be faulty.

Consensus for each computation within shards.

Cluster-sending for any communication between shards.

Consensus is costly: Minimize its use.

3/9

Ingredients of sharding and fault-tolerance

Multi-shard transaction execution of g

Replication of g among shards: two-phase commit.

Concurrency control to guarantee consistent execution of g : two-phase locking.

One needs computations within a shard and communication between shards.

Fault-tolerant shards

Each shard is a cluster of replicas that can be faulty.

Consensus for each computation within shards.

Cluster-sending for any communication between shards.

Consensus is costly: Minimize its use.

4/9

ByShard: A resilient sharding framework

Processing multishard transaction g via the orchestrate-execute model:
I Processing is broken down into three types of shard-steps: vote, commit, and abort.

I Each shard-step is performed via one consensus step.

I Transfer control between steps using cluster-sending.

Execution method determines the local operations of a shard-step:

locks, checking conditions, updating state,

Orchestration method determines how control is transferred between shard-steps:

perform votes, collect votes, decide commit or abort g .

5/9

Example of the orchestrate-execute model

Shard accounts by first le�er of name

g = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

f1 at Sa

vote-step

f2 at Sb
vote commit

vote-step

f3 at Sa
commit g

commit-step

f4 at Sa
abort-step

abort g

5/9

Example of the orchestrate-execute model

Shard accounts by first le�er of name

g = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

f1 = “Lock(Ana); if Ana has $500, then forward f2 to Sb (commit vote)

else Release(Ana) (abort vote).”

f1 at Sa

vote-step

f2 at Sb
vote commit

vote-step

f3 at Sa
commit g

commit-step

f4 at Sa
abort-step

abort g

5/9

Example of the orchestrate-execute model

Shard accounts by first le�er of name

g = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

f2 = “Lock(Bo); if Bo has $200, then add $400 to Bo; Release(Bo); and

forward f3 to Sa (commit)

else Release(Bo) and forward f4 to Sa (abort).”

f1 at Sa

vote-step

f2 at Sb
vote commit

vote-step

f3 at Sa
commit g

commit-step

f4 at Sa
abort-step

abort g

5/9

Example of the orchestrate-execute model

Shard accounts by first le�er of name

g = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

f3 = “remove $400 from Ana and Release(Ana).”
f4 = “Release(Ana).”

f1 at Sa

vote-step

f2 at Sb
vote commit

vote-step

f3 at Sa
commit g

commit-step

f4 at Sa
abort-step

abort g

6/9

The orchestration methods of ByShard

Orchestration ≈ two-phase commit, except that shards never fail.

Linear
S1

S2

S3

S4

S5

S6

Vote Vote Vote Vote Commit

Vote-steps in sequence, decide centralized , commit or abort in parallel.

Lemma 4.2. Decide with a single consensus step, independent of the number of votes.

6/9

The orchestration methods of ByShard

Orchestration ≈ two-phase commit, except that shards never fail.

Centralized
(root) S1

S2

S3

S4

S5

S6

Root Vote Vote Decide Commit

Vote-steps in parallel, decide centralized , commit or abort in parallel.

Lemma 4.2. Decide with a single consensus step, independent of the number of votes.

6/9

The orchestration methods of ByShard

Orchestration ≈ two-phase commit, except that shards never fail.

Distributed
(root) S1

S2

S3

S4

S5

S6

Root Vote Vote Commit

Vote-steps in parallel, decide decentralized , commit or abort in parallel.

Lemma 4.2. Decide with a single consensus step, independent of the number of votes.

7/9

The execution methods of ByShard

Execution updates state and performs concurrency control:
I Write uncommi�ed execution (degree 0 isolation) for free.

I Higher isolation levels via two-phase locking:

I read uncommi�ed execution (degree 1 isolation): only write locks;
I read commi�ed execution (degree 2 isolation): read locks during steps;

I serializable execution (degree 3 isolation): read and write locks.

I Blocking locks (with linear orchestration) versus non-blocking locks.

Theorem 5.3. Obtaining and releasing locks does not cost additional consensus steps.

8/9

Performance evaluation

Isolation-Free execution Lock-based execution

(write uncommi�ed) Serializable

Linear LIFu LIFs LSb LSnb

Centralized CIFu CIFs CSnb AHL

(
reference

commi�ee

)
Distributed DIFu DIFs DSnb

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

2.0

4.0

6.0

8.0

10.0

R
u

n
t
i
m

e
(
s
)

Total Runtime

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

0.5

1.0

1.5

2.0

·10
4

T
h

r
o
u

g
h

p
u

t
(
t
x
n
/s

)

Average Commi�ed Throughput

9/9

Conclusion

ByShard: a general-purpose framework for sharded resilient systems.

Eighteen high-performance multi-shard transaction processing protocols.

Fine-grained control over isolation level and performance per transaction.

