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Motivation: High-performance resilient system
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Ingredients of sharding and fault-tolerance

Multi-shard transaction execution of 7
Replication of 7 among shards: two-phase commit.
Concurrency control to guarantee consistent execution of 7: two-phase locking.

One needs computations within a shard and communication between shards.



Ingredients of sharding and fault-tolerance

Multi-shard transaction execution of 7
Replication of 7 among shards: two-phase commit.
Concurrency control to guarantee consistent execution of 7: two-phase locking.

One needs computations within a shard and communication between shards.

Fault-tolerant shards
Each shard is a cluster of replicas that can be faulty.

Consensus for each computation within shards.

Cluster-sending for any communication between shards.

Consensus is costly: Minimize its use.



BYSHARD: A resilient sharding framework

Processing multishard transaction t via the orchestrate-execute model:
» Processing is broken down into three types of shard-steps: vote, commit, and abort.
» Each shard-step is performed via one consensus step.

» Transfer control between steps using cluster-sending.

Execution method determines the local operations of a shard-step:
locks, checking conditions, updating state, ....

Orchestration method determines how control is transferred between shard-steps:
perform votes, collect votes, decide commit or abort .



Example of the orchestrate-execute model

Shard accounts by first letter of name
7 = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo”



Example of the orchestrate-execute model

Shard accounts by first letter of name
7 = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo”

o1 = “Lock(Ana); if Ana has $500, then forward o, to S, (commit vote)

else RELEASE(Ana) (abort vote).”

vote-step

oy at S,



Example of the orchestrate-execute model

Shard accounts by first letter of name
7 = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo”

0, = “Lock(Bo); if Bo has $200, then add $400 to Bo; RELEASE( Bo); and
forward o3 to S, (commit)

else RELEASE(Bo) and forward o4 to S, (abort)”

vote-step vote-step

vote commit
oy at S, 0, at Sy




Example of the orchestrate-execute model

Shard accounts by first letter of name
7 = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo”

o3 = “remove $400 from Ana and RELEASE(Ana)”

04 = “RELEASE(Ana).”

vote-step vote-step commit-step
vote commit commit T
oy at S, 0, at Sy o3 at S,
o4 at S,
abort T

abort-step



The orchestration methods of BYSHARD

Orchestration ~ two-phase commit, except that shards never fail.
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Vote-steps in sequence, decide centralized, commit or abort in parallel.



The orchestration methods of BYSHARD

Orchestration ~ two-phase commit, except that shards never fail.
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Vote-steps in parallel, decide centralized, commit or abort in parallel.

Lemma 4.2. Decide with a single consensus step, independent of the number of votes.



The orchestration methods of BYSHARD

Orchestration ~ two-phase commit, except that shards never fail.
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Vote-steps in parallel, decide decentralized, commit or abort in parallel.

Lemma 4.2. Decide with a single consensus step, independent of the number of votes.



The execution methods of BYSHARD

Execution updates state and performs concurrency control:

> Write uncommitted execution (degree 0 isolation) for free.

> Higher isolation levels via two-phase locking:

> read uncommitted execution (degree 1 isolation): only write locks;
> read committed execution (degree 2 isolation): read locks during steps;
> serializable execution (degree 3 isolation): read and write locks.

> Blocking locks (with linear orchestration) versus non-blocking locks.

Theorem 5.3. Obtaining and releasing locks does not cost additional consensus steps.



Performance evaluation
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Conclusion

BYSHARD: a general-purpose framework for sharded resilient systems.

Eighteen high-performance multi-shard transaction processing protocols.

Fine-grained control over isolation level and performance per transaction.



