BYSHARD: Sharding in a Byzantine Environment

Jelle Hellings™ Mohammad Sadoghi’

Exploratory Systems Lab
Department of Computer Science
University of California, Davis

= Expolab

Creativity Unfolded UNIVERSITY OF CALIFORNIA

2Department of Computing and Software
McMaster University

McMaster

3

University §F2
3&3,“,(

Motivation: High-performance resilient system

System
(All Data)

Ri «<—> Ry

<

R3 «—> Ry

A

Requests
(All Data)

Motivation: High-performance resilient system

System
(All Data)

Ri «<—> Ry

R3 «—> Ry

A

Requests
(All Data)

Requests Requests
(African Data) (American Data)
\ \J
F1«<—> F M| «<—> M)

F3 «<—> F4 M3 «<——> My

(African Data)

(American Data)

(Asian Data) (European Data)

S]] «<———> S) Ei «<——> E)

S3 «—> S E3 «—> E4
A A A
Requests Requests Requests

(Asian Data) (Mixed Data) (European Data)

Ingredients of sharding and fault-tolerance

Multi-shard transaction execution of 7
Replication of 7 among shards: two-phase commit.
Concurrency control to guarantee consistent execution of 7: two-phase locking.

One needs computations within a shard and communication between shards.

Ingredients of sharding and fault-tolerance

Multi-shard transaction execution of 7
Replication of 7 among shards: two-phase commit.
Concurrency control to guarantee consistent execution of 7: two-phase locking.

One needs computations within a shard and communication between shards.

Fault-tolerant shards
Each shard is a cluster of replicas that can be faulty.

Consensus for each computation within shards.

Cluster-sending for any communication between shards.

Consensus is costly: Minimize its use.

BYSHARD: A resilient sharding framework

Processing multishard transaction t via the orchestrate-execute model:
» Processing is broken down into three types of shard-steps: vote, commit, and abort.
» Each shard-step is performed via one consensus step.

» Transfer control between steps using cluster-sending.

Execution method determines the local operations of a shard-step:
locks, checking conditions, updating state,

Orchestration method determines how control is transferred between shard-steps:
perform votes, collect votes, decide commit or abort .

Example of the orchestrate-execute model

Shard accounts by first letter of name
7 = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo”

Example of the orchestrate-execute model

Shard accounts by first letter of name
7 = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo”

o1 = “Lock(Ana); if Ana has $500, then forward o, to S, (commit vote)

else RELEASE(Ana) (abort vote).”

vote-step

oy at S,

Example of the orchestrate-execute model

Shard accounts by first letter of name
7 = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo”

0, = “Lock(Bo); if Bo has $200, then add $400 to Bo; RELEASE(Bo); and
forward o3 to S, (commit)

else RELEASE(Bo) and forward o4 to S, (abort)”

vote-step vote-step

vote commit
oy at S, 0, at Sy

Example of the orchestrate-execute model

Shard accounts by first letter of name
7 = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo”

o3 = “remove $400 from Ana and RELEASE(Ana)”

04 = “RELEASE(Ana).”

vote-step vote-step commit-step
vote commit commit T
oy at S, 0, at Sy o3 at S,
o4 at S,
abort T

abort-step

The orchestration methods of BYSHARD

Orchestration ~ two-phase commit, except that shards never fail.

Linear

81
SZ
S3
S4
SS

36

Vote Vote Vote Vote Commit

Vote-steps in sequence, decide centralized, commit or abort in parallel.

The orchestration methods of BYSHARD

Orchestration ~ two-phase commit, except that shards never fail.

Centralized

(root) S!
32
33 \\
S \
SS \

6
Root Vote Vote Decide Commit

Vote-steps in parallel, decide centralized, commit or abort in parallel.

Lemma 4.2. Decide with a single consensus step, independent of the number of votes.

The orchestration methods of BYSHARD

Orchestration ~ two-phase commit, except that shards never fail.

(root) S Distributed

82 \\\\ —
S3 2 >
84 \‘ \\
SS N p—
o N[

Root Vote Vote Commit

Vote-steps in parallel, decide decentralized, commit or abort in parallel.

Lemma 4.2. Decide with a single consensus step, independent of the number of votes.

The execution methods of BYSHARD

Execution updates state and performs concurrency control:

> Write uncommitted execution (degree 0 isolation) for free.

> Higher isolation levels via two-phase locking:

> read uncommitted execution (degree 1 isolation): only write locks;
> read committed execution (degree 2 isolation): read locks during steps;
> serializable execution (degree 3 isolation): read and write locks.

> Blocking locks (with linear orchestration) versus non-blocking locks.

Theorem 5.3. Obtaining and releasing locks does not cost additional consensus steps.

Performance evaluation

Isolation-Free execution Lock-based execution
(write uncommitted) Serializable
Linear —o— LIFu =o— LIFs LS8 —o— LSNB
Centralized -4- CIFU -4- CIFs -A- CSNB -4+ AHL (“’—fe“*."ce)
committee
Distributed -#- DIFu -@- DIFs -#- DSNB
Total Runtime -10% Average Committed Throughput
0ol : . . T 200 : : ’.\
8.0r 1 st
c
@ 5
o 6.0F 8 =
E 3 1.0f
b= <
s 4.0 8 o
B £ 0.5
< 05
2.0+ 8 =
0 0 L L L L L L L L L L L | 0.0 L L L L L L L L L L L

200 21 22 28 24 25 26 27 28 P 200 21 22 23 24 25 26 o7 28 P

Conclusion

BYSHARD: a general-purpose framework for sharded resilient systems.

Eighteen high-performance multi-shard transaction processing protocols.

Fine-grained control over isolation level and performance per transaction.

