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Motivation: High-performance resilient system
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Ingredients of sharding and fault-tolerance

Multi-shard transaction execution of g

Replication of g among shards: two-phase commit.

Concurrency control to guarantee consistent execution of g : two-phase locking.

One needs computations within a shard and communication between shards.

Fault-tolerant shards

Each shard is a cluster of replicas that can be faulty.

Consensus for each computation within shards.

Cluster-sending for any communication between shards.

Consensus is costly: Minimize its use.



3/9

Ingredients of sharding and fault-tolerance

Multi-shard transaction execution of g

Replication of g among shards: two-phase commit.

Concurrency control to guarantee consistent execution of g : two-phase locking.

One needs computations within a shard and communication between shards.

Fault-tolerant shards

Each shard is a cluster of replicas that can be faulty.

Consensus for each computation within shards.

Cluster-sending for any communication between shards.

Consensus is costly: Minimize its use.



4/9

ByShard: A resilient sharding framework

Processing multishard transaction g via the orchestrate-execute model:
I Processing is broken down into three types of shard-steps: vote, commit, and abort.

I Each shard-step is performed via one consensus step.

I Transfer control between steps using cluster-sending.

Execution method determines the local operations of a shard-step:

locks, checking conditions, updating state, . . . .

Orchestration method determines how control is transferred between shard-steps:

perform votes, collect votes, decide commit or abort g .
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Example of the orchestrate-execute model

Shard accounts by first le�er of name

g = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

f1 at Sa

vote-step

f2 at Sb
vote commit

vote-step

f3 at Sa
commit g

commit-step

f4 at Sa
abort-step

abort g



5/9

Example of the orchestrate-execute model

Shard accounts by first le�er of name

g = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

f1 = “Lock(Ana); if Ana has $500, then forward f2 to Sb (commit vote)

else Release(Ana) (abort vote).”

f1 at Sa

vote-step

f2 at Sb
vote commit

vote-step

f3 at Sa
commit g

commit-step

f4 at Sa
abort-step

abort g
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Example of the orchestrate-execute model

Shard accounts by first le�er of name

g = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

f2 = “Lock(Bo); if Bo has $200, then add $400 to Bo; Release(Bo); and

forward f3 to Sa (commit)

else Release(Bo) and forward f4 to Sa (abort).”

f1 at Sa

vote-step

f2 at Sb
vote commit

vote-step

f3 at Sa
commit g

commit-step

f4 at Sa
abort-step

abort g



5/9

Example of the orchestrate-execute model

Shard accounts by first le�er of name

g = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

f3 = “remove $400 from Ana and Release(Ana).”
f4 = “Release(Ana).”

f1 at Sa

vote-step

f2 at Sb
vote commit

vote-step

f3 at Sa
commit g

commit-step

f4 at Sa
abort-step

abort g
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The orchestration methods of ByShard

Orchestration ≈ two-phase commit, except that shards never fail.

Linear
S1

S2

S3

S4

S5

S6

Vote Vote Vote Vote Commit

Vote-steps in sequence, decide centralized , commit or abort in parallel.

Lemma 4.2. Decide with a single consensus step, independent of the number of votes.



6/9

The orchestration methods of ByShard

Orchestration ≈ two-phase commit, except that shards never fail.

Centralized
(root) S1

S2

S3

S4

S5

S6

Root Vote Vote Decide Commit

Vote-steps in parallel, decide centralized , commit or abort in parallel.

Lemma 4.2. Decide with a single consensus step, independent of the number of votes.
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The orchestration methods of ByShard

Orchestration ≈ two-phase commit, except that shards never fail.

Distributed
(root) S1

S2

S3

S4

S5

S6

Root Vote Vote Commit

Vote-steps in parallel, decide decentralized , commit or abort in parallel.

Lemma 4.2. Decide with a single consensus step, independent of the number of votes.
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The execution methods of ByShard

Execution updates state and performs concurrency control:
I Write uncommi�ed execution (degree 0 isolation) for free.

I Higher isolation levels via two-phase locking:

I read uncommi�ed execution (degree 1 isolation): only write locks;
I read commi�ed execution (degree 2 isolation): read locks during steps;

I serializable execution (degree 3 isolation): read and write locks.

I Blocking locks (with linear orchestration) versus non-blocking locks.

Theorem 5.3. Obtaining and releasing locks does not cost additional consensus steps.
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Performance evaluation

Isolation-Free execution Lock-based execution
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Conclusion

ByShard: a general-purpose framework for sharded resilient systems.

Eighteen high-performance multi-shard transaction processing protocols.

Fine-grained control over isolation level and performance per transaction.


