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Fig. 2: Multi-way stream joins
with circular design.

Fig. 3: Intermediate result
generation in a pipeline stage.

introduced Circular-MJ, the processing engine for each stream
is placed in a separate stage and accessing this buffer from
two independent pipeline stages imposes multiple resource
sharing challenges in a hardware realization. First, having a
shared unit between two stages violates the main concept of
pipeline design, which is the separation of concerns. Second,
this sharing can result in race conditions between the storage
and processing of two tuples at different stages that require
expensive stalls in the pipeline to address.

In the second part of this work, we propose a custom
two-stage (for three or more streams) pipeline (referred to as
Stashed-MJ) including a stash3. The novelty of our approach is
to benefit from the reduction in the number of pipeline stages
in the favor of better utilization of available processing units
and avoiding recomputation of already processed data. Further-
more, the processing unit in the first stage operates on two win-
dows (that are also connected to the stash) but not at the same
time, which also eliminates the resource sharing challenges.

In this paper, we make the following contributions:
A) Propose a scalable multi-way stream join (Circular-MJ)

on hardware that is built on a circular chain of dedicated
stages (one per stream) and benefits from pipeline
parallelism.

B) Present a novel two-stage pipeline (Stashed-MJ) that
benefits from a stash (intermediate results buffer) to
accelerate processing throughput.

II. MULTI-WAY STREAM JOIN

A conventional join operates on tuples originating from
two sources. Naturally, we should be able to cascade the
join operators to support more than two sources (streams).
However, avoiding arbitrary (unstructured) communications
between processing components, as a crucial property for
hardware design, introduces the challenge of real-time join
operator reordering as demonstrated in Figure 1. Here tuples
from S1 and S2 streams keep the order of join operators intact
(left figure), while a new tuple from S3 stream mandates the
operator reordering (right figure). Without the reordering, we
have to recompute all intermediate join results between all
existing tuples in the sliding windows of S1 and S2 which is
not feasible due to the size and complexity of this processing.
The reordering challenge is exacerbated when dealing with
a hardware system, where changes in data-path and control
circuitry of a design, especially as it is scaled up (i.e., in the
number of streams), have severe effects on design complexity,
performance, and cost of the system.

Each new tuple insertion into the multi-way stream join
updates its sliding window and subsequently may produce new
intermediate results. Without materializing the intermediate
results, we need to sequentially cascade the join operators and

3We refer to intermediate result buffer with additional control circuitries
as stash.
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Fig. 4: Circular-MJ architecture.

feed each new tuple always from the bottom (input port) of
the cascaded architecture. Each new tuple and subsequently
its intermediate results pass through all join operators for
processing which leads to a right-deep join tree architecture.

A. Multi-Way Join with Circular Pipeline

Designing a hardware based on the join reordering poses
a scalability issue due to the required crossbar4 connection
between processing units (join operators) and sliding
windows. To address this issue, we need to fix the order of
join operators which hardwires each sliding window to only
one processing unit. This eliminates the need for a crossbar.
To fix each join operator’s location on the right-deep join tree,
we propose a circular data-path design which connects all
operators together, as shown in Figure 2. In this design, each
join operator is connected to only one sliding window with
two entries. Each operator receives its new tuples, determined
based on their origin, from its right entry. The left entries are
placed in the closed circular path which carries intermediate
results from a join operator to the next one. Resulting tuples
are emitted after processing a new tuple in exactly N � 1
operators, where we have N streams. The remaining operator
is responsible to store the new tuple in its sliding window.

Using this design (Figure 2), we propose a scalable circular
pipeline for multi-way stream join in hardware (referred to as
Circular-MJ) that is shown in Figure 4. This pipeline has the
same number of stages as input streams. Each stage is placed
between two isolating sets of registers and is responsible to
process a new tuple against a specific sliding window. In
case the window in a stage belongs to the current tuple’s
origin, store and expiration tasks are performed instead of the
processing.

B. Circular Pipeline Design Rationale

The key factor that has heavily influenced our design is
having an independent operation on each window assuming
we already have intermediate results from another join
operator(s). Therefore, we design N stages, each responsible
for processing, storage, and expiration operations on a single
sliding window. To handle data transfer between stages in a
scalable manner, we arrange them in a circular architecture
in such a way that intermediate results of each stage are fed
to another stage as input.

The key intuition of our circular design is that instead
of adapting the order of join operations to incoming tuples,
we adapt the insertion location for incoming tuples using a
pipelined distribution chain. In other words, instead of having
a single entry and reordering join operators we change the

4A type of connection which provides the possibility for every input to
access to all output ports.

A dedicated stage for each 
stream sliding window 
limits data dependency 
between stages 

A scalable architecture that 
is centered around direct 
neighbor-to-neighbor 
communication 

Eliminate the join operator 
reordering problem by 
moving the reordering task 
to tuple insertion circuitry 
using a pipelined 
distribution chain  
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Fig. 17: Steady-state throughput
measurements (tuples/s)
(6�way,w :214,mp :0.01%).

usage patterns for all StageBuffers shows that the circular pipeline
is working in a balanced state, meaning that there are no starved
or overloaded stages.

Figure 18 presents the maximum number of intermediate
results in a StageBuffer during the whole experiment for a 6-way
Circular-MJ while changing the match probability and the normal
distribution mean (µ). An increase in the match probability
rapidly increases the usage due to the higher production rate of
intermediate results.

In Figure 19, we report the average value for the number of
tuples in StageBuffer for all six stages of a 6-way Circular-MJ.
As expected, the average number of tuples remains small even
for the high match probability of 0.01%. However, we observe
an oscillation between odd and even stages that is common in the
systems with feedback as long as it remains in a small margin.

Considering both Figures 18 and 19 shows that the uniform
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Fig. 18: StageBuffer max usage (1ststage,6�way,w :214,� :1).
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distribution for tuples’ origin puts a greater strain on the circular
pipeline since it spreads new tuples uniformly between all
stages which increases the chance of stalls, as also described in
Figure 15. This is evident from the higher average number of
tuples that are accumulated in the StageBuffers. Furthermore,
we observe a small average value for the StageBuffers’ usage
(Figure 19), regardless of high burst generation of intermediate
results. Therefore, Circular-MJ remains operational with smaller
StageBuffers than the maximum values presented in Figure 18.

Hash-Based Stream Join Measurements: To demonstrate
the applicability our solution in the deployment of other
join algorithms, we present measurements for a Circular-MJ
realization that benefits from a hash-based equi-join hardware
in Figure 20. Here, the input throughput mainly depends on the
efficiency of hashing algorithm. As expected, our hash-based
solution presents a significantly higher throughput which is due
to the fast probing of hashed sliding windows. Similar to the
nested-loop Circular-MJ we see improvements in the processing
throughput as we increase the number of streams that is due to
the increase in the pipelining parallelism.

5.2 Stashed-MJ Evaluations
We now shift our focus to evaluating our optimized pipeline stream
join (Stashed-MJ) with both enabled and disabled stash options.

Stash Activity Analysis: The progress timeline of the stash in
our Stashed-MJ, for a small stash (specified by s), is demonstrated
in Figure 21. It takes around 25ms for the stash to get past its
warm-up phase (specified by the first vertical dotted line). During
this time, the number of intermediate results in the stash grows
until it coverages to a value (here 19) defined by the arriving
tuples’ match probability and the size of sliding windows. At
around 450ms, we observe a peak in Figure 21 that leads to
overwriting the stash as the number of intermediate results grows
larger than its size. After the overwrite, the stash goes into the
failure state while monitoring expirations for the recovery that
happens at around 550ms.

The peak in Figure 21 is later followed by a drop that is caused
by the following sequence of events. Stash storage mechanisms
in the failure state can overwrite valid results even when there are
available free slots. The reason that stash approaches its recovery
is a reduction (after a temporal increase) in the match rate and, as
a result, generation of fewer intermediate results. Sum of the two
previous conditions concludes in having (temporally) fewer valid
intermediate results in the stash that draw this transient valley.

Stash Usage Analysis: The experiments for stash usage in
our Stashed-MJ with a stash on a pair of S1&S2 streams are
presented in Figure 22. For a window size of 215, the warm-up
period lasts around 100K tuple insertion, that is roughly equal to
3⇥215. As expected, the higher match probability leads to more
intermediate results in the stash.

(w:2^14, mp:0.0001%)
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Fig. 2: Multi-way stream joins
with circular design.
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generation in a pipeline stage.

3 MULTI-WAY STREAM JOIN

A conventional join operates on tuples originating from two
sources. Naturally, we should be able to cascade the join operators
to support more than two sources (streams). However, avoiding
arbitrary (unstructured) communications between processing
components, as a crucial property for hardware design, introduces
the challenge of real-time join operator reordering as demonstrated
in Figure 1. Here tuples from S1 and S2 streams keep the order
of join operators intact (left figure), while a new tuple from S3

stream mandates the operator reordering (right figure). Without
the reordering, we have to recompute all intermediate join results
between all existing tuples in the sliding windows of S1 and
S2 which is not feasible due to the size and complexity of this
processing. The reordering challenge is exacerbated when dealing
with a hardware system, where changes in data-path and control
circuitry of a design, especially as it is scaled up (i.e., in the
number of streams), have severe effects on design complexity,
performance, and cost of the system.

Each new tuple insertion into the multi-way stream join
updates its sliding window and subsequently may produce new
intermediate results. Without materializing the intermediate
results, we need to sequentially cascade the join operators and
feed each new tuple always from the bottom (input port) of
the cascaded architecture. Each new tuple and subsequently its
intermediate results pass through all join operators for processing
which leads to a right-deep join tree architecture.

3.1 Multi-Way Join with Circular Pipeline
Designing a hardware based on the join reordering poses a
scalability issue due to the required crossbar4 connection between
processing units (join operators) and sliding windows. To address
this issue, we need to fix the order of join operators which
hardwires each sliding window to only one processing unit. This
eliminates the need for a crossbar. To fix each join operator’s
location on the right-deep join tree, we propose a circular
data-path design which connects all operators together, as shown
in Figure 2. In this design, each join operator is connected to only
one sliding window with two entries. Each operator receives its
new tuples, determined based on their origin, from its right entry.
The left entries are placed in the closed circular path which carries
intermediate results from a join operator to the next one. Resulting
tuples are emitted after processing a new tuple in exactly N �1
operators, where we have N streams. The remaining operator is
responsible to store the new tuple in its sliding window.

Using this design (Figure 2), we propose a scalable circular
pipeline for multi-way stream joins in hardware (referred to as
Circular-MJ) that is shown in Figure 4. This pipeline has the same

4. A type of connection which provides the possibility for every input to
access to all output ports.

Fig. 4: Circular-MJ architecture.

number of stages as input streams. Each stage is placed between
two isolating sets of registers and is responsible to process a new
tuple against a specific sliding window. In case the window in a
stage belongs to the current tuple’s origin, store and expiration
tasks are performed instead of the processing. To handle data
transfer between stages in a scalable manner, we arrange them in
a circular architecture in such a way that intermediate results of
each stage are fed to another stage as input.

3.2 Circular Pipeline Design Rationale
The decision that has heavily influenced our design is to have an
independent operation on each window assuming we already have
intermediate results from another join operator(s). Therefore, we
design N stages, each responsible for processing, storage, and
expiration operations on a single sliding window. To handle data
transfer between stages in a scalable manner, we arrange them in
a circular architecture in such a way that intermediate results of
each stage are fed to another stage as input.

The key intuition of our circular design is that instead of
adapting the order of join operations to incoming tuples, we
adapt the insertion location for incoming tuples using a pipelined
distribution chain. In other words, instead of having a single entry
and reordering join operators, we change the architecture to have
an adaptive entry to fix the join operators order; and respectively,
to hardwire each sliding window to a separate processing unit
(Figure 4).

Our circular design differs from a conventional pipeline in
three ways: (1) A circular bus that passes through all stages within
pipeline that relies exclusively on direct neighbor-to-neighbor
communication. (2) Arbitrary access to any stage in the pipeline as
opposed to physically fixing each stream to one join operator in the
pipeline. (3) Arbitrary output collection from all stages that is nec-
essary to offload the final results while sustaining high throughput.

3.3 Circular-MJ Architecture
In our circular pipeline, each stage is connected to its two neighbor
stages using the circular bus as shown in Figure 4. This bus pro-
vides a processing path that encompasses all pipeline stages. Each
stage contains three main components: (1) a StageBuffer, (2) a Join
Core, and (3) an Order Control Unit. To feed the incoming tuples
to the stages, we use a pipelined chain of registers (referred to as
distribution chain) that carries new tuples to their corresponding
stage. The purpose of the distribution chain is to keep the circular
pipeline at full utilization and maximize processing throughput.

(1) StageBuffer collects intermediate results from a previous
stage and feeds them one-by-one to its stage’s join core. The

Linear Pipeline Multi-Way Stream Join Design 
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Unit to store new tuples and expire oldest ones. Each new tuple
overwrites the oldest tuple on Int-Buf while a copy is sent to the next
stage Int-Buf when its processing in the current stage is over. Since
we delay the storage of new tuples to the last pipeline stage, each
stage takes care of in-order processing to guarantee correct results.
In each stage, all new tuples arrived prior to the current tuple, that
are under processing and belong to the sliding window in this stage
(assumem), are also considered for the processing. Consequently,
we need to exclude the matches that are from the lastm tuples in the
sliding window since they were supposed to be expired.

ArchitectureDrawbacks:AlthoughLinear-MJutilizes thepoint-
to-point communications between the processing units, it lacks from
the scalability perspective due to the N − to −N crossbar switch
present in theWindow Access Manager of Figure 27. The existence
of this switch is necessary for this design since each pipeline stage
can implement any join operator and therefore it can access any of
sliding windows. Another drawback in Linear-MJ architecture is
the window access con�icts that may arise from the concurrent read
requests to the same window frommultiple join cores and also more
severe concurrent read requests (from join cores) and write request
fromthe storageandexpiryunit.Although themultiple read requests
canbe addressedbyoptimizing the crossbar switch andalsouse locks
to mitigate the concurrent reads-write requests con�icts, they put
a great strain on the design complexity, resource consumption, and
the actual processing performance of a hardware realization.

A.2 Analytical Evaluation
Here we present analytical evaluation for Stashed-MJ with both
disabled and enabled stash.

Stashed-MJ with Disabled Stash: The processing latency is
calculated as follows:

Latency=P(TS1 )×(Tproc(WS2 )+mr(TS1,WS2 )×Tproc(WS3 ))+
P(TS2 )×(Tproc(WS1 )+mr(TS2,WS1 )×Tproc(WS3 ))+
P(TS3 )×(Tproc(WS1 )+mr(TS3,WS1 )×Tproc(WS2 ))

(1)

where P(TSx ) de�nes the probability of having a tuple from stream
Sx . Notice that we do not haveTstore_expire in the equations any-
more since storage and expiration operations are overlapped with
processing operation on another window.

If we assume all P(TSx ),Tproc(WSx ), andmr(TSx ,Wi ) are identical,
then equation simpli�es to:

Latency=Tproc(W )×(1+mr(T ,W )) (2)

For the throughput evaluation, we observe that the time to pro-
cess one tuple in the second stage of the pipeline is interleaved with
the time to process the next incoming tuple in the �rst stage since
they are executed in parallel. This pipelining e�ect also applies to
other stages leading to the following throughput equation for our

Table 1: Pipeline stages access pattern (disabled stash).

Pipeline Stage 1 Pipeline Stage 2
Tuple PU SEU Tuple PU SEU
TS1 WS2 WS1 TS1 WS3 −
TS1 WS2 WS1 TS2 WS3 −
TS1 WS2 WS1 TS3 WS2 WS3
TS2 WS1 WS2 TS1 WS3 −
TS2 WS1 WS2 TS2 WS3 −
TS2 WS1 WS2 TS3 WS2 WS3
TS3 WS1 − TS1 WS3 −
TS3 WS1 − TS2 WS3 −
TS3 WS1 − TS3 WS2 WS3

two-stage pipeline, assuming similar properties for all streams:

�roughput=
1

Tproc(W )×(1+U (mr−1)×(mr−1)) (3)

whereU (x) is unit step function. This equation also con�rms that for
match_rate≤ 1 the throughput of system remains independent of
the number of streams and correspondingly the number of pipeline
stages.

Stashed-MJwithEnabledStash: Inclusionof stash in thepipeline
architecture changes the time required to process a tuple for S3
stream compared to previous equations. Assuming we have a stash
in its normal (functional) state, the average processing latency for
a tuple that uses this stash is calculated as follows:

Latency for TS3 =Tproc(Stash) (4)

sinceTS3 is only compared against stash in the �rst stage and the
results are emitted directly from this stage. Note that the time to
store and expire in/fromWS3 is a small constant and is overlapped
by the processing ofTS3 in the �rst stage.

For tuples from S1 and S2 that do not bene�t from the stash, the
latency is calculated using the previous equations. Although the
match rate does not exist in this equation, it and the size of sliding
windows de�ne the proper size for the stash that a�ects the latency.
Since we only have one working stage in our pipeline when using
stash, the throughput would be the reverse of latency for the stream
that uses stash (here S3).

�roughput for TS3 =
1

Tproc(Stash)
(5)

Using the evaluations for throughput of Stashed-MJ with and
without stash, the e�ectiveness of stash is analytically con�rmed if
the following condition holds:

Tproc(Stash) ≤Tproc(W )×(1+U (mr−1)×(mr−1)) (6)

The processing time is directly related to the number of tuples for
the comparison. As a result, using a stash≥slidin�window not only
provides no improvements, it imposes performance penalties due
to the additional circuitries and memory resources.

A.3 Stashed-MJWindowAccess Pattern
In the two-state pipeline sinceWS2 is shared between the �rst and
second stages, in a few cases it is locked by the second stage to avoid
any race condition between the processing of tuple in the second
stage and storage of a newer tuple in the �rst stage.

Table 1 shows the access pattern in each stage of the pipeline (Fig-
ure 8)while receivingnew tuples. Sincewehave two stages and three
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Abstract—Efficient real-time analytics are an integral part

of a growing number of data management applications such

as computational targeted advertising, algorithmic trading,

and Internet of Things. In this paper, we primarily focus on

accelerating stream joins, arguably one of the most commonly

used and resource-intensive operators in stream processing. We

propose a scalable circular pipeline design (Circular-MJ) in

hardware to orchestrate multi-way join while minimizing data

flow disruption. In this circular design, each new tuple (given its

origin stream) starts its processing from a specific join core and

passes through all respective join cores in a pipeline sequence

to produce final results. We further present a novel two-stage

pipeline stream join (Stashed-MJ) that uses a best-effort

buffering technique (stash) to maintain intermediate results. In

a case that an overwrite is detected in the stash, our design

automatically resorts to recomputing intermediate results. Our

experimental results demonstrate a linear throughput scaling

with respect to the number of execution units in hardware.

I. INTRODUCTION

In recent years, there has been an increasing interest in
data stream management systems which encompasses a wide
range of applications such as real-time data analytics, targeted
advertising, data mining, and Internet of Things. The com-
mon pattern among these applications is a predefined set of
streaming queries (e.g., ad campaigns or trading strategies) and
unbounded event streams of incoming data (e.g., user profiles
or stock feeds) that must be processed against queries in real-
time. These latency-sensitive and throughput-intensive appli-
cations have opened the demand for accelerating data manage-
ment operations in general and stream processing in particular.

Considering the crucial role of joins as resource-intensive
operators in relational databases, it is not of a surprise that
stream joins have also been the focus of much research on
data streams [1], [2], [3], [4], [5], [6], [7], [8]. For example,
consider TPC-H [9] where 20 queries (out of 22) contain
join operator while 12 of them use multi-way joins some
up to 7 joins. However, the importance of joins is no longer
limited to only the classical relational setting. The emergence
of Internet of Things (IoT) has introduced a wide wave of
applications that rely on sensing, gathering, and processing
data from an increasingly large number of connected devices.

In stream join processing, software platforms offer flexible
communication where we see anycast and multicast connec-
tions between internal components without a significant drop
in performance. As an example, assume a system with four
internal components of A, B, C, and D where a point-to-point
connection between them could build a data-path similar to
A!B!C!D. In a software platform establishing commu-
nication i.e., A!D and B!D is not detrimental especially
given the flexible shared memory hierarchy. State-of-art soft-
ware approaches in a multi-way stream join benefit from this
provided flexibility that leads to an unstructured1 architecture.

1We define unstructured architecture as an arbitrary point-to-point
communication (or other classes of communication pattern such as anycast)
among any processing nodes within the system.

S1S2

S3

S2.Price< S3.Price < S2.Price+$10

S1.OrderNr = S2.OrderNr

TS3TS1TS2

S1

S2 S3

S2.Price< S3.Price < S2.Price+$10

S1.OrderNr = S2.OrderNr

TS2
Fig. 1: Reordering operators in multi-way stream joins.

However, on hardware, it is instrumental to predetermine and
plan the necessary communication channels otherwise designs’
performance, complexity, and cost rapidly increase since all
communications have to be exclusively realized using physical
wiring. This motivates complete rethinking of the hardware
design rather than simply relying on re-implementation of
available software solutions. On the other hand, the execution
of continuous queries (i.e., repetitive tasks) on potentially
unbounded streams using the finite-window semantics offer
a unique opportunity and make it suitable for hardware accel-
eration. A hardware solution presents negligible, if any, gains
when executing an operation only once versus its competing
software variant; however, when this operation repeats many
times, the amortized gains grow far beyond that of a software.

Multi-Way Stream Join: Past hardware solutions [3],
[4], [10], [11], [12], [13], [14] focus on a join between
two streams while practical queries often go beyond joining
two streams. Notice it is non-trivial to build multi-way join
operators by cascading operators designed for two streams as
each new tuple, depending on its origin, requires its own order
of join operators for the processing. Therefore, it remains a
major challenge to design multi-way stream joins in hardware
due to excessive cost and penalty of flexible communications.

In the first part of this work, we propose a novel circular
pipeline architecture for multi-way stream join (Circular-MJ)
that uses a dedicated stage for each stream sliding window.
This inherently limits data dependency between stages by
using results of each stage as input for the next stage,
leading to a scalable architecture that is centered around
direct neighbor-to-neighbor communication. We use two
fundamental steps to reshape the problem of multi-way join
to design a scalable hardware architecture. First, we change
the problem of unstructured multi-way stream join designs
to a join reordering problem in a structured point-to-point
design. Second, we eliminate the join operator reordering
problem by moving the reordering task to tuple insertion
circuitry using a pipelined distribution chain.

Multi-Way Stream Join Optimization with Stash:

Depending on streams’ characteristics and join operators’
properties, materializing intermediate results2 in a buffer
may provide performance improvements by avoiding
recomputation of already processed tuples. However, in the

2Outcomes of each join operator, except the last one in a join tree which
emits the final results, are referred to as intermediate results.
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Fig. 3: Intermediate result
generation in a pipeline stage.

introduced Circular-MJ, the processing engine for each stream
is placed in a separate stage and accessing this buffer from
two independent pipeline stages imposes multiple resource
sharing challenges in a hardware realization. First, having a
shared unit between two stages violates the main concept of
pipeline design, which is the separation of concerns. Second,
this sharing can result in race conditions between the storage
and processing of two tuples at different stages that require
expensive stalls in the pipeline to address.

In the second part of this work, we propose a custom
two-stage (for three or more streams) pipeline (referred to as
Stashed-MJ) including a stash3. The novelty of our approach is
to benefit from the reduction in the number of pipeline stages
in the favor of better utilization of available processing units
and avoiding recomputation of already processed data. Further-
more, the processing unit in the first stage operates on two win-
dows (that are also connected to the stash) but not at the same
time, which also eliminates the resource sharing challenges.

In this paper, we make the following contributions:
A) Propose a scalable multi-way stream join (Circular-MJ)

on hardware that is built on a circular chain of dedicated
stages (one per stream) and benefits from pipeline
parallelism.

B) Present a novel two-stage pipeline (Stashed-MJ) that
benefits from a stash (intermediate results buffer) to
accelerate processing throughput.

II. MULTI-WAY STREAM JOIN

A conventional join operates on tuples originating from
two sources. Naturally, we should be able to cascade the
join operators to support more than two sources (streams).
However, avoiding arbitrary (unstructured) communications
between processing components, as a crucial property for
hardware design, introduces the challenge of real-time join
operator reordering as demonstrated in Figure 1. Here tuples
from S1 and S2 streams keep the order of join operators intact
(left figure), while a new tuple from S3 stream mandates the
operator reordering (right figure). Without the reordering, we
have to recompute all intermediate join results between all
existing tuples in the sliding windows of S1 and S2 which is
not feasible due to the size and complexity of this processing.
The reordering challenge is exacerbated when dealing with
a hardware system, where changes in data-path and control
circuitry of a design, especially as it is scaled up (i.e., in the
number of streams), have severe effects on design complexity,
performance, and cost of the system.

Each new tuple insertion into the multi-way stream join
updates its sliding window and subsequently may produce new
intermediate results. Without materializing the intermediate
results, we need to sequentially cascade the join operators and

3We refer to intermediate result buffer with additional control circuitries
as stash.

Fig. 4: Circular-MJ architecture.

feed each new tuple always from the bottom (input port) of
the cascaded architecture. Each new tuple and subsequently
its intermediate results pass through all join operators for
processing which leads to a right-deep join tree architecture.

A. Multi-Way Join with Circular Pipeline

Designing a hardware based on the join reordering poses
a scalability issue due to the required crossbar4 connection
between processing units (join operators) and sliding
windows. To address this issue, we need to fix the order of
join operators which hardwires each sliding window to only
one processing unit. This eliminates the need for a crossbar.
To fix each join operator’s location on the right-deep join tree,
we propose a circular data-path design which connects all
operators together, as shown in Figure 2. In this design, each
join operator is connected to only one sliding window with
two entries. Each operator receives its new tuples, determined
based on their origin, from its right entry. The left entries are
placed in the closed circular path which carries intermediate
results from a join operator to the next one. Resulting tuples
are emitted after processing a new tuple in exactly N � 1
operators, where we have N streams. The remaining operator
is responsible to store the new tuple in its sliding window.

Using this design (Figure 2), we propose a scalable circular
pipeline for multi-way stream join in hardware (referred to as
Circular-MJ) that is shown in Figure 4. This pipeline has the
same number of stages as input streams. Each stage is placed
between two isolating sets of registers and is responsible to
process a new tuple against a specific sliding window. In
case the window in a stage belongs to the current tuple’s
origin, store and expiration tasks are performed instead of the
processing.

B. Circular Pipeline Design Rationale

The key factor that has heavily influenced our design is
having an independent operation on each window assuming
we already have intermediate results from another join
operator(s). Therefore, we design N stages, each responsible
for processing, storage, and expiration operations on a single
sliding window. To handle data transfer between stages in a
scalable manner, we arrange them in a circular architecture
in such a way that intermediate results of each stage are fed
to another stage as input.

The key intuition of our circular design is that instead
of adapting the order of join operations to incoming tuples,
we adapt the insertion location for incoming tuples using a
pipelined distribution chain. In other words, instead of having
a single entry and reordering join operators we change the

4A type of connection which provides the possibility for every input to
access to all output ports.

Circular data-path 
Multiple input channels 
Fixed join operators order
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raises two concerns. First, having a shared block between two
pipeline stages that could be accessed frequently and in par-
allel violates the main concept of the circular pipeline design
that is based on separation of concerns and a strictly one-way
neighbor-to-neighbor communication. Second, this sharing
can result in race conditions between concurrent processing of
a new tuple and storing the matched results of an earlier tuple,
which now demands expensive pipeline stalls for coordination.

In Circular-MJ, we utilize three pipeline stages for a 3-way
stream join operation. For every tuple insertion, two of these
stages process this tuple against the sliding window of other
streams while the remaining stage is responsible for storing
this tuple in its stream’s sliding window and expiring the oldest
tuple from it. There are two key insights that guide our new
Stashed-MJ design: (1) storage and expiration operations are
relatively less costly compared to processing (especially in
nested-loop stream join), and (2) storage and expiration are
performed on a separate sliding window than the windows that
are used for processing. By exploiting these insights, we re-
duce the number of pipeline stages to two by performing stor-
age and expiration in parallel with the processing in the first
pipeline stage. As a result, the processing unit in the first stage
has to operate on two sliding windows, depending on newly re-
ceived tuples’ origin, but not at the same time. This provides us
with the opportunity to offload the processing operation of two
streams that are involved in updating the stash onto this stage,
which eliminates the sharing challenge as shown in Figure 6.

IV. EXPERIMENTAL RESULTS

We have realized our multi-way stream join pipeline
(Circular-MJ) and optimized pipeline with stash (Stashed-MJ)
in VHDL. For evaluations we used Questa Advanced
Simulator to extract cycle accurate measurements (with
a clock frequency of 100MHz), guaranteeing the same
performance for the actual hardware. We employed input
streams that consist of 64-bit (32-bit key and 32-bit value)
tuples that are joined against other streams sliding windows.

To measure the effect of stream count on input throughput
we use join conditions with high selectivity (low match
probability) to approach the maximum sustainable throughput,
presented in Figure 7a. As expected from the pipelining
parallelism, increase in the number of pipeline stages
linearly improves the processing throughput. This shows the
effectiveness of the distribution chain since it has been able
to keep the pipeline stages busy which is the key factor
in pipelining parallelism. On the left side of this figure we
first observe a warm-up phase where we have a super linear
reduction in the input throughput as sliding windows get

filled. The vertical dash lines specify the end of the warm-up
phase for pipelines with a different number of streams.

Figures 7b and 7c present input throughput for lower
selectivities. We only observe a small reduction in the input
throughput in Figure 7b while the measurements for match
probability (mp) of 0.01%, Figure 7c, show a much lower
and also sporadic throughput readings. Increasing the match
probability leads to more intermediate results in each pipeline
stage which enforce next stages to process them instead
of receiving new tuples. In a smaller pipeline, intermediate
results require less number of stages to construct final results
which are the reason for smaller throughput drop for pipelines
with lower number of streams in Figure 7c.

V. CONCLUSIONS

We have focused on hardware acceleration of multi-way
stream joins. In particular, we presented Circular-MJ, a novel
circular pipeline architecture for realizing multi-way stream
join that eliminates the need to re-arrange the order of join
operators and avoids arbitrary point-to-point communication
among custom join cores. We further expanded our multi-way
join design, referred to Stashed-MJ, to efficiently cache
intermediate results in order to avoid recomputing the already
processed data.
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Fig. 8: Stashed-MJ architecture.

streams) in Figure 8. The design is divided into three regions, each
shown by a gray background. The upper region shows the main ex-
ecution unit including two-stage pipeline while the middle one de-
picts interconnection circuitry, and, the lower region specifies the
memory components consisting of sliding windows and the stash.

The first stage of the pipeline is responsible for the join
operation on a new tuple against WS1 (S1 sliding window), WS2 ,
or stash. The actual execution is performed in Process unit; and,
in case there is an intermediate result, it is stored in the stash after
passing through Result Store unit. The storage into stash occur
after reception of a grant signal from S1&S2 Store & Expire
unit indicating that the new tuple related storage and expiration
tasks are over. This results in better utilization of stash due to
the removal of expired intermediate results that frees space for
new ones including the current tuple intermediate results. The
second stage of pipeline performs the join operation on a new
tuple against WS2 or WS3 , besides the storage and expiration
operations related to tuples from S3 stream.

The two-stage concept simplifies the design when considering
stash since processing of tuples from S1 and S2 streams with
WS2 and WS1 , respectively, is performed only in the first stage.
Therefore, the intermediate results are produced on the same
stage as the stash is located. This eliminates traveling of the
intermediate results between stages and inherently removes their
corresponding race conditions.

Stashed-MJ Operation: After receiving a new tuple from
S1 stream (TS1 ), it gets processed against WS2 while being
inserted into WS1 and expiring the oldest tuple. The expired
tuple’s key is used by S1&S2 Store & Expire unit to probe and
expire all intermediate results, in the stash, that include this tuple.
Meanwhile Result Store unit makes it possible for S1&S2 Store
& Expire and Process units to operate in parallel, minimizing the
time spent in this stage. While the intermediate results are being
stored in the stash, they are also sent (one-by-one) to the second
pipeline stage to be processed against WS3 .

A new TS3 is joined first against stash only if it has all
intermediate results (no recent overwrite in the stash), and then
final results are emitted directly from the first stage. TS3 related
store and expiration tasks are performed in the second stage by
S3 Store & Expire unit. In case the stash does not contain all the
intermediate results, TS3 gets processed against WS1 and WS2 in
the first and second stage, respectively.

Stash Effectiveness: As demonstrated in Figure 9, materializ-
ing intermediate results in a buffer accelerates the whole execution
for tuples from the S3 stream since they are only compared with

Fig. 9: Intermediate
result buffer.

result expire

valid bit

S1 tuple key
S1 tuple content
S2 tuple key
S2 tuple content

pointer to 
the next 

empty slot

0

0
0

0 0
0

0

0

0

0

1

1 1
1

0

Stash

intermittent 
usage

Stash
Controller

result store

stash read

missed result

Overwrite Key 
Buffer

S1-key S2-key

Fig. 10: Stash design and its internal
components.

intermediate results in this buffer. However, there are two major
challenges regarding this buffer which we elaborate on next.

The first challenge is its effectiveness with respect to the
processing throughput. Assume we have a stash for a pair of S1

and S2 streams similar to Figure 9. Receiving tuples from the S1

and S2 streams do not benefit from this buffer since they have
to be processed against WS2 and WS1 , respectively, and then
against WS3 . However, a tuple from the S3 stream only needs to
be processed against the materialized intermediate results, while
without this buffer, we have to reorder the join operators and
process TS3 with WS1 and then process the intermediate results
within WS2 . Furthermore, this buffer provides a trade-off between
using increased storage vs. reduced computation that can improve
system power consumption in addition to boosting the processing
throughput when properly utilized.

Depending on the match probability, the number of
intermediate results could vary from a few tuples up to the size of
WS1⇥WS2 , which makes the size of this buffer another concern.
Opting for a small size increases the possibility of overwrite that
renders the existence of this buffer ineffective since we need to
re-process tuples from the S3 stream with both WS1 and WS2 to
avoid missing any results. On the other hand, a large buffer could
make the solution less effective by consuming a large memory.

To addresses these challenges, meaning that the intermediate
buffer can be effective if the following two conditions hold: (1)
the expected tuple rate from the S3 stream is high compared to
other streams since this buffer is only used when receiving tuples
from this stream, and (2) the expected number of intermediate
results is not great compared to the sliding windows’ size, which
is further elaborated in Subsection 4.3.

4.2 Stash Internal Architecture & Operation
We use a circular buffer that stores intermediate results (any
pair of tuples that have satisfied the join condition) in addition
to a valid-bit for each. A true (logical value of one) valid-bit
shows that the content for that buffer slot is valid and vice versa.
Figure 10 shows the main components for the stash.

Stash Expiration: Upon reception of a new tuple S1&S2

Store & Expire unit stores it in its corresponding sliding window.
At the same time this unit also expires the oldest tuple in the
sliding window that is followed by an expiration process on the
stash. S1&S2 Store & Expire unit uses the key of recently expired
tuple to search for the intermediate results that include this key in
the stash. Expiration in the stash is done by setting the valid-bit
of expired intermediate results to false.

The expiration process can expire intermediate results from
any location in the stash. This leads to a non-continuous use of
stash that we refer to as intermittent usage. The intermittent usage

Stash Effect on Throughput 
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Stash Overwrite Effect: The effect of an overwrite on
throughput is also shown in Figure 23. At around 11s from the
start of processing, while the stash is almost at the end of its
warm-up period, we observe a significant drop in throughput that
is due to an overwrite in the stash. The stash being in the failure
state, our Stashed-MJ uses the same processing path (resulting in
a less variable throughput) as other streams to process S3, which
reduces the throughput.

Excessively Large Stash Effect: Figure 24a presents the
effect of choosing a large stash on the input throughput that leads
to a significant drop after the first expiration which occurs at
around 3s after the start of processing. Before the first expiration,
there is no need to traverse the whole stash since there has been
no intermittent usage yet. Afterward, we need to process the
whole stash, which results in a significant performance drop when
the stash size is comparably larger than the sliding windows. We
observe around five times reduction in the average throughput after
the first expiration when using a stash size of 216 compared to 212.

Tuples’ Origin Effect: In Figure 24b, we observe the effect
of change on the probability of (tuples) reception from the S3

stream compared to other two streams in our Stashed-MJ with
stash. Each sample in this diagram presents maximum, average,
and minimum values of 100 samples. Since there are no stashes
for other stream pairs, tuples from S1 and S2 streams have to
be processed against other sliding windows while tuples from
the S3 stream are only evaluated against the intermediate results
available in the stash. This is the reason for the large gap between
maximum and minimum throughputs, as S3 tuples are processed
much faster than others.

Steady-State Measurements: The steady state throughput
measurements for our Stashed-MJ with and without stash are
presented in Figure 24c. For match probabilities higher than
0.01%, we do not see any improvement from the stash; however,
as we reduce this probability, the stash becomes more effective. A
match probability of 0.01% and a window size of 214 produces

more results than a 214 (window size). Therefore, the stash stays
in the failure state permanently, meaning it will be ignored by
the pipeline. We see a slight degradation in throughput from the
pipeline without stash that is due to the stash circuitries overheads.
For smaller match probabilities for the same window size, we ob-
serve a significant boost in the throughput that is directly propor-
tional to the reverse of stash size (being in the non-failure state).

One interesting observation is the slightly lower input
throughput of Stashed-MJ (especially when disabling the stash)
compared to a 3-way Circular-MJ as demonstrated in Figures 11
and 24c, respectively. The reason for this is that the Circular-MJ
utilizes three processing units compared to two of the Stashed-MJ.
Therefore, it benefits more from pipelining parallelism, resulting
in slightly more input throughput.

5.3 Parallel-MJ Evaluations
We present experimental evaluations of our parallel stream join,
built by integration of our Stashed-MJ (without stash) in the
uni-flow parallel stream join architecture that we refer to as
Parallel-MJ. Notice that the integration of Circular-MJ into the
uni-flow parallel architecture follows a similar principle, but
omitted in the interest of space.

Global Join Core Count Effect: Figure 25 illustrates the
throughput measurement as we increase the number of global
join cores (G-JCs). In each diagram, we see a warm-up period in
which the system throughput drops as sliding windows fill up. The
end of the warm-up period is shown by the dotted vertical line in
this figure. The measurements show a linear acceleration. Using 8
G-JCs, we get a throughput of ⇠47K tuples/s that is around 8⇥
faster than ⇠5.97K tuples/s observed in Figure 24c. Similarly,
utilizing 16, 32, 64, and 128 G-JCs leads to an average throughput
of 97K , 194K , 386K , and 763K tuples/s, respectively.

Throughput Sensitivity to Match-Rate12: Spikes in the

12. The average number of resulting tuples per inserted new tuple that is de-
termined by the match probability and the size of window to be compared with.
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Fig. 5: Order control unit architecture.

architecture to have an adaptive entry to fix the join operators
order; and respectively, to hardwire each sliding window to a
separate processing unit (Figure 4).

Our circular design differs from a conventional pipeline in
three ways: (1) A circular bus that passes through all stages
within pipeline that relies exclusively on direct neighbor-to-
neighbor communication. (2) Arbitrary access to any stage
in the pipeline as opposed to physically fixing each stream
to one join operator in the pipeline. (3) Arbitrary output
collection from all stages that is necessary to offload the final
results while sustaining high throughput.

C. Circular-MJ Architecture

Our circular pipeline consists of N stages. Each stage is
surrounded by two isolating sets of pipeline registers that are
connected to other stages using the circular bus as shown in
Figure 4. This bus provides a processing path that encompasses
all pipeline stages. Each stage contains three main
components: (1) a StageBuffer, (2) a Join Core, and (3) an
Order Control Unit. To feed the incoming tuples to the stages,
we use a pipelined chain of registers (referred to as distribution

chain) that carries new tuples to their corresponding stage. The
purpose of the distribution chain is to keep the circular pipeline
at full utilization and maximize processing throughput.

(1) StageBuffer collects intermediate results from a
previous stage and feeds them one-by-one to its stage’s join
core. The existence of this buffer is necessary to prevent
deadlocks caused by the joint burst of intermediate results and
new tuples. A deadlock may occur due to a low selectivity
(high match probabilities5) in multiple consecutive join
operators in the deep join tree that leads to the generation of
many intermediate results.

In the deadlock scenario, all StageBuffers are full and
each stage is waiting for the next stage to consume some of
the intermediate results in its buffer for further processing.
Looking at this scenario from the perspective of ith stage
that is waiting for (i+ 1)th stage to consume some of the
intermediate results in its StageBuffer. Then, given N streams,
the nth stage waits for the 1st stage and this dependency
reaches to the (i�1)th stage which is waiting for the ith stage
since the pipeline stages are arranged in a circular architecture.
Therefore, the ith stage is waiting for itself to continue the
processing which translates to a deadlock. Using a StageBuffer
at the entry of each stage prevents deadlocks from happening
by providing extra space to store intermediate results. This
way the ith stage can push its produced intermediate results
without waiting for the next stage to consume them.

Furthermore, we give priority to intermediate results over
new tuples, which further reduces the chance of a deadlock.

5The probability that any two consecutive tuples (each from one of
streams) satisfy a join condition. Thus, as selectivity increases, the match

probability (mp) decreases.

Window S1 Window S2 Window S3

grant

Stash

Stage 1
Controller

Stage 2
Controller

Process

Result
Store

S3 Tuple
Store & Expire

S1 & S2 Tuple
Store & Expire

result store done

process done
tuple store done

expiry done

process done
tuple store done

expiry done

re
su

lts

Window S2 
access lock

Access 
Controller 1

Access 
Controller 2

Process

in
co

m
in

g t
up

le
s f

ro
m

 S
1,

 S
2,

 a
nd

 S
3

Fig. 6: Stashed-MJ architecture.

This means, when there is a choice between processing an
intermediate result or a new tuple, a stage controller picks the
former to reduce the StageBuffer’s fill-ratio. Additionally, to
fully prevent deadlocks, we drop an intermediate result when
the StageBuffer fill-ratio is beyond a specified threshold.

(2) Order Control Unit is responsible for the correct execu-
tion order. The out-of-order tuple insertion into the processing
pipeline by the distribution chain can lead to incorrect (match
by consecutive tuples) or missed results (missing prematurely
expired tuples). This unit gets involved in two tasks of a new
tuple store and lookup, as shown in Figure 5. This unit has an
OBuf that stores newly received tuples from the distribution
chain and an EBuf that stores expired tuples from the sliding
window. These two buffers are the same size as the number of
streams (pipeline stages). The order control unit has an Out-of-

Order Calculator which counts the number of tuples belonging
to its stage’s sliding window which are stored in this window
prematurely6. To avoid incorrect matches with prematurely
stored tuples, the order control unit uses a Refine component
to drop them. To avoid missing matches with prematurely
expired tuples, a Compute component performs an additional
comparison with the same number as the prematurely stored
tuples, with the last expired tuples in the EBuf.

(3) Join Core contains its dedicated stream’s sliding
window in addition to the processing, storage, and expiry
components that operate on this window. The sliding window
can be count-based or time-based, and the joining algorithm
can encompass different approaches from nested-loop, used
for general joins, to hash-based, used for equi-joins.

III. MULTI-WAY STREAM JOIN WITH STASH

We now turn our attention to another key dimension of
multi-way join architecture by introducing Stashed-MJ, a
novel buffering and an improved pipelining that consists of
two key ideas. The first property of Stashed-MJ design is
the integration of a buffer, referred to as stash, to materialize
intermediate results in order to substantially improve the
throughput by avoiding recomputation of previously processed
tuples. The second property is centered around improving
resource utilization. In Circular-MJ, only N�1 stages out of
N stages perform the processing such that, for each stream,
one stage is always occupied with the storage and expiry
tasks. Therefore, there is always one unused processing unit
in the circular pipeline.

Integration of the stash into Circular-MJ (Figure 4) imposes
an important design challenge because we are now forced to
share the buffer among more than one processing units that
are placed into two or more separate pipeline stages. This

6Earlier than their order in correspondence with the current tuple under
processing.
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Fig. 11: Stream count effect on input throughput (w :214, stream(stage) count :3 ,4 ,5 ,6 ,7 ,8 ).

within each global8 join core (G-JC) without influencing the
overall parallel architecture.

To integrate our Circular-MJ (or Stashed-MJ but with disabled
stash) into the uni-flow model, we use the same architecture pre-
sented in Figure 8 with the addition of Store-Expire Turn counters
in the input of each Circular-MJ which resides inside a global join
core. In the parallel architecture, referred to it as Parallel-MJ, we
replicate the global join cores to get a linear throughput scaling.

Store-Expire Turn counters preserve the position of a global
join core among other global join cores (P ) that is later used to
calculate the storage turn of incoming tuples in parallel stream
join based on the uni-flow model. Each counter (CSj ) is dedicated
to a stream (Sj) and counts the number of tuples received from
that stream. In each global join core (i), a new tuple from (Sj)
is stored and the oldest tuple is expired from its corresponding
sliding window when (i ⌘ CSj mod P ) while all other global
join cores process this tuple in parallel. Except for the storage and
expiration operations that are performed in a round-robin fashion,
Circular-MJ pipeline remains as before and it executes the join
operators on each incoming tuple in parallel with others in other
global join cores.

8. We refer to each separate compute unit in the parallelized architecture
as a global join core (G-JC). Each G-JC can contain a Circular-MJ (or a
Stashed-MJ with disabled stash) realization.
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Fig. 12: Match probability effect on throughput (6�way,w :214).

5 EXPERIMENTAL RESULTS

We have realized our scalable multi-way stream join pipeline
(Circular-MJ), optimized pipeline with stash (Stashed-MJ), and
parallel pipeline (Parallel-MJ) in VHDL, and synthesized and
implemented on a Virtex-UltraScale XCVU190 FPGA. For
evaluations we used Questa Advanced Simulator to
extract cycle accurate measurements (with a clock frequency
of 100MHz), guaranteeing the same performance for the actual
hardware. For the synthesis and implementation steps on the
FPGA, we used Xilinx Vivado 2017.2.1 tool, while our
VHDL realizations are also valid to build an ASIC solution.

Each input stream consists of 64-bit (32-bit key and 32-
bit value) tuples that are joined against other streams sliding
windows. Our realizations have the ability to adopt larger tuples
that are defined by pre-synthesis parameters. We use the same
probabilities to have a new tuple from each individual stream,
unless explicitly specified. We utilize both uniform and normal
distributions9 and a range limiter function10 from OSVVM
library11 to assign a stream identifier (origin) for each new
tuple. We have demonstrated two examples for the stream origin
assignment using µ:2, �:1 and µ:5, �:2 parameters in Figure 16.

5.1 Circular-MJ Evaluations

In the first part of evaluations, we consider the effect of different
parameters on our Circular-MJ realization. Our focus here is on
the design and architecture of the pipeline that is orthogonal to the
choice of join algorithms employed. In our study, we primarily
use a nested-loop in each join operator. This allows better
evaluation of our pipeline properties since the long processing
times for each tuple force intermediate results to accumulate in
the StageBuffers and put the pipeline under stress. Additionally,
we present throughput measurements for a Circular-MJ using
hash-based join to demonstrate the detachment of our pipeline
designs to chosen join algorithms.

Stream Count Effect: To measure the number of streams ef-
fect on input throughput we use join conditions with high selectiv-
ity (low match probability) to approach the maximum sustainable
throughput, presented in Figure 11a. As expected from the pipelin-
ing parallelism, increase in the number of pipeline stages linearly
improves the processing throughput. This shows the effectiveness
of the distribution chain since it is able to keep the pipeline stages
busy which is the key factor in the pipelining parallelism. On the
left side of this figure we first observe a warm-up phase where we
have a super linear reduction in the input throughput as sliding

9. RandTyp := Op.setRandomParm(NORMAL, Mean, Deviation).
10. RandVal := Op.Randslv(1, 6).
11. The Open Source VHDL Verification Methodology.
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