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Abstract—Efficient real-time analytics are an integral part
of a growing number of data management applications such
as computational targeted advertising, algorithmic trading,
and Internet of Things. In this paper, we primarily focus on
accelerating stream joins, arguably one of the most commonly
used and resource-intensive operators in stream processing. We
propose a scalable circular pipeline design (Circular-MJ) in
hardware to orchestrate multi-way join while minimizing data
flow disruption. In this circular design, each new tuple (given its
origin stream) starts its processing from a specific join core and
passes through all respective join cores in a pipeline sequence
to produce final results. We further present a novel two-stage
pipeline stream join (Stashed-MJ) that uses a best-effort
buffering technique (stash) to maintain intermediate results. In
a case that an overwrite is detected in the stash, our design
automatically resorts to recomputing intermediate results. Our
experimental results demonstrate a linear throughput scaling
with respect to the number of execution units in hardware.

I. INTRODUCTION

In recent years, there has been an increasing interest in
data stream management systems which encompasses a wide
range of applications such as real-time data analytics, targeted
advertising, data mining, and Internet of Things. The com-
mon pattern among these applications is a predefined set of
streaming queries (e.g., ad campaigns or trading strategies) and
unbounded event streams of incoming data (e.g., user profiles
or stock feeds) that must be processed against queries in real-
time. These latency-sensitive and throughput-intensive appli-
cations have opened the demand for accelerating data manage-
ment operations in general and stream processing in particular.

Considering the crucial role of joins as resource-intensive
operators in relational databases, it is not of a surprise that
stream joins have also been the focus of much research on
data streams [1], [2], [3], [4], [5], [6], [7], [8]. For example,
consider TPC-H [9] where 20 queries (out of 22) contain
join operator while 12 of them use multi-way joins some
up to 7 joins. However, the importance of joins is no longer
limited to only the classical relational setting. The emergence
of Internet of Things (IoT) has introduced a wide wave of
applications that rely on sensing, gathering, and processing
data from an increasingly large number of connected devices.

In stream join processing, software platforms offer flexible
communication where we see anycast and multicast connec-
tions between internal components without a significant drop
in performance. As an example, assume a system with four
internal components of A, B, C, and D where a point-to-point
connection between them could build a data-path similar to
A→B→C→D. In a software platform establishing commu-
nication i.e., A→D and B→D is not detrimental especially
given the flexible shared memory hierarchy. State-of-art soft-
ware approaches in a multi-way stream join benefit from this
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Fig. 1: Reordering operators in multi-way stream joins.

provided flexibility that leads to an unstructured1 architecture.
However, on hardware, it is instrumental to predetermine and
plan the necessary communication channels otherwise designs’
performance, complexity, and cost rapidly increase since all
communications have to be exclusively realized using physical
wiring. This motivates complete rethinking of the hardware
design rather than simply relying on re-implementation of
available software solutions. On the other hand, the execution
of continuous queries (i.e., repetitive tasks) on potentially
unbounded streams using the finite-window semantics offer
a unique opportunity and make it suitable for hardware accel-
eration. A hardware solution presents negligible, if any, gains
when executing an operation only once versus its competing
software variant; however, when this operation repeats many
times, the amortized gains grow far beyond that of a software.

Multi-Way Stream Join: Past hardware solutions [3],
[4], [10], [11], [12], [13], [14] focus on a join between
two streams while practical queries often go beyond joining
two streams. Notice it is non-trivial to build multi-way join
operators by cascading operators designed for two streams as
each new tuple, depending on its origin, requires its own order
of join operators for the processing. Therefore, it remains a
major challenge to design multi-way stream joins in hardware
due to excessive cost and penalty of flexible communications.

In the first part of this work, we propose a novel circular
pipeline architecture for multi-way stream join (Circular-MJ)
that uses a dedicated stage for each stream sliding window.
This inherently limits data dependency between stages by
using results of each stage as input for the next stage,
leading to a scalable architecture that is centered around
direct neighbor-to-neighbor communication. We use two
fundamental steps to reshape the problem of multi-way join
to design a scalable hardware architecture. First, we change
the problem of unstructured multi-way stream join designs
to a join reordering problem in a structured point-to-point
design. Second, we eliminate the join operator reordering
problem by moving the reordering task to tuple insertion
circuitry using a pipelined distribution chain.

Multi-Way Stream Join Optimization with Stash:
Depending on streams’ characteristics and join operators’

1We define unstructured architecture as an arbitrary point-to-point
communication (or other classes of communication pattern such as anycast)
among any processing nodes within the system.
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Fig. 3: Intermediate result
generation in a pipeline stage.

properties, materializing intermediate results2 in a buffer
may provide performance improvements by avoiding
recomputation of already processed tuples. However, in the
introduced Circular-MJ, the processing engine for each stream
is placed in a separate stage and accessing this buffer from
two independent pipeline stages imposes multiple resource
sharing challenges in a hardware realization. First, having a
shared unit between two stages violates the main concept of
pipeline design, which is the separation of concerns. Second,
this sharing can result in race conditions between the storage
and processing of two tuples at different stages that require
expensive stalls in the pipeline to address.

In the second part of this work, we propose a custom
two-stage (for three or more streams) pipeline (referred to as
Stashed-MJ) including a stash3. The novelty of our approach is
to benefit from the reduction in the number of pipeline stages
in the favor of better utilization of available processing units
and avoiding recomputation of already processed data. Further-
more, the processing unit in the first stage operates on two win-
dows (that are also connected to the stash) but not at the same
time, which also eliminates the resource sharing challenges.

In this paper, we make the following contributions:
A) Propose a scalable multi-way stream join (Circular-MJ)

on hardware that is built on a circular chain of dedicated
stages (one per stream) and benefits from pipeline
parallelism.

B) Present a novel two-stage pipeline (Stashed-MJ) that
benefits from a stash (intermediate results buffer) to
accelerate processing throughput.

II. MULTI-WAY STREAM JOIN

A conventional join operates on tuples originating from
two sources. Naturally, we should be able to cascade the
join operators to support more than two sources (streams).
However, avoiding arbitrary (unstructured) communications
between processing components, as a crucial property for
hardware design, introduces the challenge of real-time join
operator reordering as demonstrated in Figure 1. Here tuples
from S1 and S2 streams keep the order of join operators intact
(left figure), while a new tuple from S3 stream mandates the
operator reordering (right figure). Without the reordering, we
have to recompute all intermediate join results between all
existing tuples in the sliding windows of S1 and S2 which is
not feasible due to the size and complexity of this processing.
The reordering challenge is exacerbated when dealing with
a hardware system, where changes in data-path and control
circuitry of a design, especially as it is scaled up (i.e., in the
number of streams), have severe effects on design complexity,
performance, and cost of the system.

2Outcomes of each join operator, except the last one in a join tree which
emits the final results, are referred to as intermediate results.

3We refer to intermediate result buffer with additional control circuitries
as stash.
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Fig. 4: Circular-MJ architecture.

Each new tuple insertion into the multi-way stream join
updates its sliding window and subsequently may produce new
intermediate results. Without materializing the intermediate
results, we need to sequentially cascade the join operators and
feed each new tuple always from the bottom (input port) of
the cascaded architecture. Each new tuple and subsequently
its intermediate results pass through all join operators for
processing which leads to a right-deep join tree architecture.

A. Multi-Way Join with Circular Pipeline
Designing a hardware based on the join reordering poses

a scalability issue due to the required crossbar4 connection
between processing units (join operators) and sliding
windows. To address this issue, we need to fix the order of
join operators which hardwires each sliding window to only
one processing unit. This eliminates the need for a crossbar.
To fix each join operator’s location on the right-deep join tree,
we propose a circular data-path design which connects all
operators together, as shown in Figure 2. In this design, each
join operator is connected to only one sliding window with
two entries. Each operator receives its new tuples, determined
based on their origin, from its right entry. The left entries are
placed in the closed circular path which carries intermediate
results from a join operator to the next one. Resulting tuples
are emitted after processing a new tuple in exactly N − 1
operators, where we have N streams. The remaining operator
is responsible to store the new tuple in its sliding window.

Using this design (Figure 2), we propose a scalable circular
pipeline for multi-way stream join in hardware (referred to as
Circular-MJ) that is shown in Figure 4. This pipeline has the
same number of stages as input streams. Each stage is placed
between two isolating sets of registers and is responsible to
process a new tuple against a specific sliding window. In
case the window in a stage belongs to the current tuple’s
origin, store and expiration tasks are performed instead of the
processing.

B. Circular Pipeline Design Rationale
The key factor that has heavily influenced our design is

having an independent operation on each window assuming
we already have intermediate results from another join
operator(s). Therefore, we design N stages, each responsible
for processing, storage, and expiration operations on a single
sliding window. To handle data transfer between stages in a
scalable manner, we arrange them in a circular architecture
in such a way that intermediate results of each stage are fed
to another stage as input.

The key intuition of our circular design is that instead
of adapting the order of join operations to incoming tuples,

4A type of connection which provides the possibility for every input to
access to all output ports.
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we adapt the insertion location for incoming tuples using a
pipelined distribution chain. In other words, instead of having
a single entry and reordering join operators we change the
architecture to have an adaptive entry to fix the join operators
order; and respectively, to hardwire each sliding window to a
separate processing unit (Figure 4).

Our circular design differs from a conventional pipeline in
three ways: (1) A circular bus that passes through all stages
within pipeline that relies exclusively on direct neighbor-to-
neighbor communication. (2) Arbitrary access to any stage
in the pipeline as opposed to physically fixing each stream
to one join operator in the pipeline. (3) Arbitrary output
collection from all stages that is necessary to offload the final
results while sustaining high throughput.

C. Circular-MJ Architecture

Our circular pipeline consists of N stages. Each stage is
surrounded by two isolating sets of pipeline registers that are
connected to other stages using the circular bus as shown in
Figure 4. This bus provides a processing path that encompasses
all pipeline stages. Each stage contains three main
components: (1) a StageBuffer, (2) a Join Core, and (3) an
Order Control Unit. To feed the incoming tuples to the stages,
we use a pipelined chain of registers (referred to as distribution
chain) that carries new tuples to their corresponding stage. The
purpose of the distribution chain is to keep the circular pipeline
at full utilization and maximize processing throughput.

(1) StageBuffer collects intermediate results from a
previous stage and feeds them one-by-one to its stage’s join
core. The existence of this buffer is necessary to prevent
deadlocks caused by the joint burst of intermediate results and
new tuples. A deadlock may occur due to a low selectivity
(high match probabilities5) in multiple consecutive join
operators in the deep join tree that leads to the generation of
many intermediate results.

In the deadlock scenario, all StageBuffers are full and
each stage is waiting for the next stage to consume some of
the intermediate results in its buffer for further processing.
Looking at this scenario from the perspective of ith stage
that is waiting for (i+ 1)th stage to consume some of the
intermediate results in its StageBuffer. Then, given N streams,
the nth stage waits for the 1st stage and this dependency
reaches to the (i−1)th stage which is waiting for the ith stage
since the pipeline stages are arranged in a circular architecture.
Therefore, the ith stage is waiting for itself to continue the
processing which translates to a deadlock. Using a StageBuffer
at the entry of each stage prevents deadlocks from happening
by providing extra space to store intermediate results. This

5The probability that any two consecutive tuples (each from one of
streams) satisfy a join condition. Thus, as selectivity increases, the match
probability (mp) decreases.
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Fig. 6: Stashed-MJ architecture.

way the ith stage can push its produced intermediate results
without waiting for the next stage to consume them.

Furthermore, we give priority to intermediate results over
new tuples, which further reduces the chance of a deadlock.
This means, when there is a choice between processing an
intermediate result or a new tuple, a stage controller picks the
former to reduce the StageBuffer’s fill-ratio. Additionally, to
fully prevent deadlocks, we drop an intermediate result when
the StageBuffer fill-ratio is beyond a specified threshold.

(2) Order Control Unit is responsible for the correct execu-
tion order. The out-of-order tuple insertion into the processing
pipeline by the distribution chain can lead to incorrect (match
by consecutive tuples) or missed results (missing prematurely
expired tuples). This unit gets involved in two tasks of a new
tuple store and lookup, as shown in Figure 5. This unit has an
OBuf that stores newly received tuples from the distribution
chain and an EBuf that stores expired tuples from the sliding
window. These two buffers are the same size as the number of
streams (pipeline stages). The order control unit has an Out-of-
Order Calculator which counts the number of tuples belonging
to its stage’s sliding window which are stored in this window
prematurely6. To avoid incorrect matches with prematurely
stored tuples, the order control unit uses a Refine component
to drop them. To avoid missing matches with prematurely
expired tuples, a Compute component performs an additional
comparison with the same number as the prematurely stored
tuples, with the last expired tuples in the EBuf.

(3) Join Core contains its dedicated stream’s sliding
window in addition to the processing, storage, and expiry
components that operate on this window. The sliding window
can be count-based or time-based, and the joining algorithm
can encompass different approaches from nested-loop, used
for general joins, to hash-based, used for equi-joins.

III. MULTI-WAY STREAM JOIN WITH STASH

We now turn our attention to another key dimension of
multi-way join architecture by introducing Stashed-MJ, a
novel buffering and an improved pipelining that consists of
two key ideas. The first property of Stashed-MJ design is
the integration of a buffer, referred to as stash, to materialize
intermediate results in order to substantially improve the
throughput by avoiding recomputation of previously processed
tuples. The second property is centered around improving
resource utilization. In Circular-MJ, only N−1 stages out of
N stages perform the processing such that, for each stream,
one stage is always occupied with the storage and expiry
tasks. Therefore, there is always one unused processing unit
in the circular pipeline.

6Earlier than their order in correspondence with the current tuple under
processing.
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Integration of the stash into Circular-MJ (Figure 4) imposes
an important design challenge because we are now forced to
share the buffer among more than one processing units that
are placed into two or more separate pipeline stages. This
raises two concerns. First, having a shared block between two
pipeline stages that could be accessed frequently and in par-
allel violates the main concept of the circular pipeline design
that is based on separation of concerns and a strictly one-way
neighbor-to-neighbor communication. Second, this sharing
can result in race conditions between concurrent processing of
a new tuple and storing the matched results of an earlier tuple,
which now demands expensive pipeline stalls for coordination.

In Circular-MJ, we utilize three pipeline stages for a 3-way
stream join operation. For every tuple insertion, two of these
stages process this tuple against the sliding window of other
streams while the remaining stage is responsible for storing
this tuple in its stream’s sliding window and expiring the oldest
tuple from it. There are two key insights that guide our new
Stashed-MJ design: (1) storage and expiration operations are
relatively less costly compared to processing (especially in
nested-loop stream join), and (2) storage and expiration are
performed on a separate sliding window than the windows that
are used for processing. By exploiting these insights, we re-
duce the number of pipeline stages to two by performing stor-
age and expiration in parallel with the processing in the first
pipeline stage. As a result, the processing unit in the first stage
has to operate on two sliding windows, depending on newly re-
ceived tuples’ origin, but not at the same time. This provides us
with the opportunity to offload the processing operation of two
streams that are involved in updating the stash onto this stage,
which eliminates the sharing challenge as shown in Figure 6.

IV. EXPERIMENTAL RESULTS

We have realized our multi-way stream join pipeline
(Circular-MJ) and optimized pipeline with stash (Stashed-MJ)
in VHDL. For evaluations we used Questa Advanced
Simulator to extract cycle accurate measurements (with
a clock frequency of 100MHz), guaranteeing the same
performance for the actual hardware. We employed input
streams that consist of 64-bit (32-bit key and 32-bit value)
tuples that are joined against other streams sliding windows.

To measure the effect of stream count on input throughput
we use join conditions with high selectivity (low match
probability) to approach the maximum sustainable throughput,
presented in Figure 7a. As expected from the pipelining
parallelism, increase in the number of pipeline stages
linearly improves the processing throughput. This shows the
effectiveness of the distribution chain since it has been able
to keep the pipeline stages busy which is the key factor
in pipelining parallelism. On the left side of this figure we

first observe a warm-up phase where we have a super linear
reduction in the input throughput as sliding windows get
filled. The vertical dash lines specify the end of the warm-up
phase for pipelines with a different number of streams.

Figures 7b and 7c present input throughput for lower
selectivities. We only observe a small reduction in the input
throughput in Figure 7b while the measurements for match
probability (mp) of 0.01%, Figure 7c, show a much lower
and also sporadic throughput readings. Increasing the match
probability leads to more intermediate results in each pipeline
stage which enforce next stages to process them instead
of receiving new tuples. In a smaller pipeline, intermediate
results require less number of stages to construct final results
which are the reason for smaller throughput drop for pipelines
with lower number of streams in Figure 7c.

V. CONCLUSIONS

We have focused on hardware acceleration of multi-way
stream joins. In particular, we presented Circular-MJ, a novel
circular pipeline architecture for realizing multi-way stream
join that eliminates the need to re-arrange the order of join
operators and avoids arbitrary point-to-point communication
among custom join cores. We further expanded our multi-way
join design, referred to Stashed-MJ, to efficiently cache
intermediate results in order to avoid recomputing the already
processed data.
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