
ExtendingIn-MemoryRelationalDatabaseEngines
withNativeGraphSupport

Mohamed S. Hassan1, Tatiana Kuznetsova1, Hyun Chai Jeong1, Walid G. Aref1, Mohammad Sadoghi2
1Purdue University, West Lafayette, IN 2University of California, Davis, CA

Motivation
• Graphs are ubiquitous (e.g., road networks, social networks,

biological networks, data-center networks)
• Specialized graph systems are not as mature as RDBMSs
• Graph-Relational queries are pervasive in many applications

– Queries containing graph operations, (e.g., shortest-
paths) and relational predicates

– E.g., select specific users from relational tables, then
find their nearest hospitals using shortest-path over a
road-network

• Vanilla RDBMSs cannot evaluate deep-traversal queries effi-
ciently

– Large intermediate results of the join operations
– Inaccurate cardinality estimation

Existing Approaches
• Native Relational-Core

– Deep-traversal queries are inefficient to evaluate
– Graphs are encoded in complex schemas

• Native Graph-Core

– Graphs are extracted from RDBMS into graph-core
– Graph updates require graph re-extraction
– Queries cannot reference non-extracted relational data

Relational Database

Relational Data

Relational Queries

(SQL)

Results

Graph Encoded into

Relational Tables

Graph Queries

SQL Translation Layer

Relational Database

Relational Data

Graph Extraction

Queries (SQL)

Graph Extraction and Materialization Engine

Extracted Graphs

Graph

Database

Results

Graph Queries

Figure 1: Existing approaches for leveraging relational databases to
support graph processing.

Proposed Approach: Native G+R Core
• Represent graphs as native graph structures
• Extend SQL to reference graphs in queries
• Support cross-data-model QEPs
• GRFusion realizes the Native G+R approach

In-Memory Relational Database

Graph Views (Topology

+ Tuple Pointers)
Relational Data

Graph Construction

⋈

σ GraphOp

π Graph and

Relational Operators

in the Same QEP

Graph-Relational Queries (SQL)

Results

Figure 2: The Native G+R Core Approach.

Traversal Operators
GRFusion introduces the PathScan logical operator

• Operate over a graph view
• Has three corresponding physical operators: DFScan, BF-
Scan, and SPScan

• Specify the vertexes to start the traversal from
• The output extends the standard relational tuple, hence, the

output can be ingested by any relational operator

Creating Graph Views in GRFusion

Figure 3: Creating a Social-Network Graph-View Example.

Lightweight Graph Views in GRFusion

EdgeId ………

100 ………

200 ………

……… ………

…......... ………

…......... ………

5

VertexId ………

1 ………

2 ………

……… ………

K ………

…......... ………

Materialized
Graph-View

Topology

1

2 k

VertexId = 1
OutEdges = {100, 200}
InEdges = {}

EdgeId = 100
Start = 1, End = 2

EdgeId = 200
Start = 1, End = K

Tu
p

le
 P

o
in

te
r

Vertexes’ Attributes

Graph-View
Relational Sources

Edges’ Attributes

Figure 4: A graph view materializes the topology and holds pointers
to the relational data of the vertexes and the edges.

The PATHS Construct and Cross-Model QEPs

PathScanPathLength = 2 AND

E.StartDate > ‘1/1/2000’

πendVertex.lstName

SocialNetwork

MemGraph

TableScanJob = ‘Lawyer’

⋈Id = StartVertexId

Vertex
Relational
Source

Figure 5: GRFusion joins a table with a graph-view traversal-operator.

Graph-Traversal Query Examples

Figure 6: Reachability and Shortest Path Queries in GRFusion.

Experimental Results

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

)

Path Length

Reachability Queries (Tiger)

GRFusion SQLGraph Neo4j Titan

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

)

Path Length

Reachability Queries (String)

GRFusion SQLGraph Neo4j Titan

100

1000

10000

100000

1000000

0 2 4 6 8 10 12 14 16 18 20

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

)

Path Length

Reachability Queries (Twitter)

GRFusion SQLGraph Neo4j Titan

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45 50

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

)

Edge Selectivity (%)

Constrained-Reachability Queries (Tiger)

GRFusion SQLGraph Neo4j Titan

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45 50

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

)

Edge Selectivity (%)

Constrained-Reachability Queries (String)

GRFusion SQLGraph Neo4j Titan

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45 50

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

)

Edge Selectivity (%)

Constrained-Reachability Queries (Twitter)

GRFusion Neo4j Titan

Figure 7: GRFusion achieves up to four orders-of-magnitude query-
time speedup for constrained and unconstrained reachability queries.

