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Motivation
• Graphs are ubiquitous (e.g., road networks, social networks,

biological networks, data-center networks)
• Specialized graph systems are not as mature as RDBMSs
• Graph-Relational queries are pervasive in many applications

– Queries containing graph operations, (e.g., shortest-
paths) and relational predicates

– E.g., select specific users from relational tables, then
find their nearest hospitals using shortest-path over a
road-network

• Vanilla RDBMSs cannot evaluate deep-traversal queries effi-
ciently

– Large intermediate results of the join operations
– Inaccurate cardinality estimation

Existing Approaches
• Native Relational-Core

– Deep-traversal queries are inefficient to evaluate
– Graphs are encoded in complex schemas

• Native Graph-Core

– Graphs are extracted from RDBMS into graph-core
– Graph updates require graph re-extraction
– Queries cannot reference non-extracted relational data
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Figure 1: Existing approaches for leveraging relational databases to
support graph processing.

Proposed Approach: Native G+R Core
• Represent graphs as native graph structures
• Extend SQL to reference graphs in queries
• Support cross-data-model QEPs
• GRFusion realizes the Native G+R approach
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Figure 2: The Native G+R Core Approach.

Traversal Operators
GRFusion introduces the PathScan logical operator

• Operate over a graph view
• Has three corresponding physical operators: DFScan, BF-
Scan, and SPScan

• Specify the vertexes to start the traversal from
• The output extends the standard relational tuple, hence, the

output can be ingested by any relational operator

Creating Graph Views in GRFusion

 

 

 

 

 

 

Figure 3: Creating a Social-Network Graph-View Example.

Lightweight Graph Views in GRFusion

EdgeId ………

100 ………

200 ………

……… ………

…......... ………

…......... ………

5

VertexId ………

1 ………

2 ………

……… ………

K ………

…......... ………

Materialized 
Graph-View 

Topology

1

2 k

VertexId = 1
OutEdges = {100, 200}
InEdges = {}

EdgeId = 100
Start = 1, End = 2

EdgeId = 200
Start = 1, End = K

Tu
p

le
 P

o
in

te
r

Vertexes’ Attributes

Graph-View
Relational Sources

Edges’ Attributes

Figure 4: A graph view materializes the topology and holds pointers
to the relational data of the vertexes and the edges.

The PATHS Construct and Cross-Model QEPs
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Figure 5: GRFusion joins a table with a graph-view traversal-operator.

Graph-Traversal Query Examples

 

 

 

 

 

 

 

 

Figure 6: Reachability and Shortest Path Queries in GRFusion.

Experimental Results
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Figure 7: GRFusion achieves up to four orders-of-magnitude query-
time speedup for constrained and unconstrained reachability queries.


