Coordination-free Byzantine Replication with Minimal Communication Costs

Jelle Hellings Mohammad Sadoghi

Exploratory Systems Lab, Department of Computer Science, University of California, Davis, CA, USA

1/12

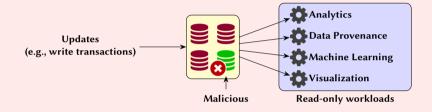
Towards high performance fault-tolerant data processing

Fault tolerance via full replication

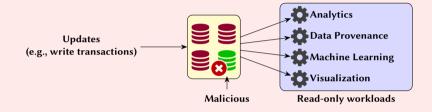
- Communication intensive: coordinate all steps of the system via consensus.
- No scalability: adding replicas reduces performance.
- ▶ *Replicas can be malicious*: read-only queries cannot be answered by single replicas.
- ▶ No sharding, no geo-aware data localization, no specialization.

Contradicts standard techniques used for high-performance data processing!

Towards our vision: specializing for read-only workloads



Towards our vision: specializing for read-only workloads



Enabling data-hungry read-only workloads

Need to stream all data updates with low cost for all replicas involved.

The need for Byzantine learning

Definition

Let \mathfrak{R} be a cluster deciding on a sequence of transactions.

The *Byzantine learning problem* is the problem of sending the decided transactions from \Re to a learner L such that:

- ▶ the learner L will eventually *receive all* decided transactions;
- ▶ the learner L will *only receive* decided transactions.

Practical requirements

- Minimizing overall communication.
- ► Load balancing among all replicas in ℜ.

Background: Information dispersal algorithms

Definition

Let *v* be a value with storage size s = ||v||. An *information dispersal algorithm* can encode *v* in **n** pieces *v'* such that *v* can be *decoded* from every set of **n** – **f** such pieces.

Theorem (Rabin 1989)

The IDA algorithm is an optimal information dispersal algorithm:

- Each piece v' has size $\left[\frac{\|v\|}{n-f}\right]$.
- The **n f** pieces necessary for decoding have a total size of $(\mathbf{n} \mathbf{f}) \begin{bmatrix} \|v\| \\ (\mathbf{n} \mathbf{f}) \end{bmatrix} \approx \|v\|$.

The delayed-replication algorithm

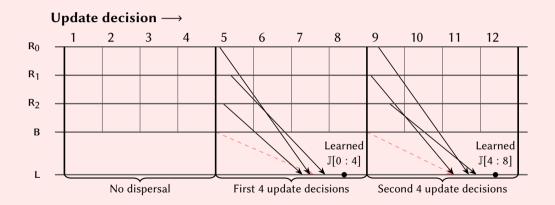
Idea: \Re sends a journal to learner L

- 1. Partition the journal in sequences S of **n** transactions.
- 2. Replica $R_i \in \Re$ encodes *S* into the *i*-th IDA piece S_i .
- 3. Replica $R_i \in \Re$ sends S_i with a checksum $C_i(S)$ of S to L.
- 4. L receives at least n f distinct pieces and decodes S.

Observation (n > 2f)

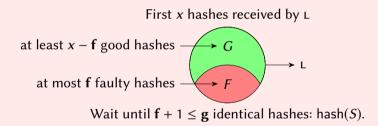
- Replica R_i sends at most $B = \left\lceil \frac{\|S\|}{n-f} \right\rceil + c \le \frac{2\|S\|}{n} + 1 + c = O\left(\frac{\|S\|}{n} + c\right)$ bytes.
- Learner L receives at most $\mathbf{n} \cdot B = O(||S|| + c\mathbf{n})$ bytes.

Communication by the delayed-replication algorithm



Decoding *S* using simple checksums (n > 2f)

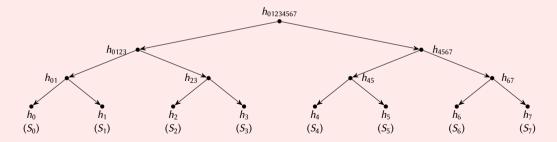
- ► Use checksums hash(*S*).
- ► The **n f** non-faulty replicas will provide correct *pieces*.
- At least $\mathbf{n} \mathbf{f} > \mathbf{f}$ messages with correct *checksums*.



Compute intensive for learners: one can choose n – f out of n messages in (ⁿ_{n-f}) ways only one such choice is guaranteed to be correct!

Decoding *S* using tree checksums

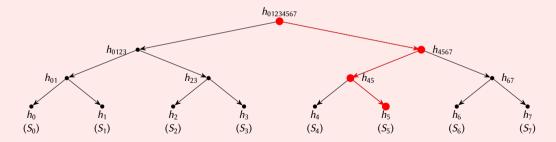
Use Merkle-trees to construct checksums Consider 8 replicas and a sequence S. We construct the checksum $C_5(S)$ of S (used by R_5).



Construct a Merkle tree for pieces S_0, \ldots, S_7 .

Decoding *S* using tree checksums

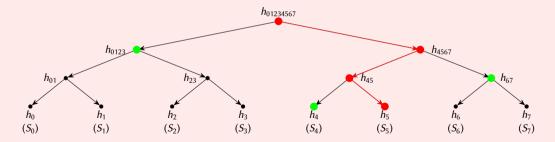
Use Merkle-trees to construct checksums Consider 8 replicas and a sequence S. We construct the checksum $C_5(S)$ of S (used by R_5).



Determine the path from root to S_5 .

Decoding *S* using tree checksums

Use Merkle-trees to construct checksums Consider 8 replicas and a sequence S. We construct the checksum $C_5(S)$ of S (used by R_5).



Select root and neighbors: $C_5(S) = [h_4, h_{67}, h_{0123}, h_{01234567}].$

Delayed-replication: Main result (n > 2f)

Theorem

Consider the learner L, replica R, and decided transactions T. The delayed-replication algorithm with tree checksums guarantees

- 1. ι will learn \mathcal{T} ;
- 2. *L* will receive at most $|\mathcal{T}|$ messages with a total size of $O(||\mathcal{T}|| + |\mathcal{T}| \log \mathbf{n})$;
- 3. *L* will only need at most $|\mathcal{T}|/\mathbf{n}$ decode steps;
- 4. *R* will sent at most $|\mathcal{T}|/n$ messages to *L* of size $O\left(\frac{||\mathcal{T}||+|\mathcal{T}|\log n}{n}\right)$.

Application: scalable storage for resilient systems

- Clusters typically need only a *view* V on the data to decide whether updates are valid.
- Clusters only need the full journal J for recovery.
- We can use *delayed-replication* to reduce the data each replica has to store.

Theorem

The storage cost per replica can be reduced from

$$O\left(\|\mathbb{J}\| + \|\mathbb{V}\|\right)$$
 to $O\left(\frac{\|\mathbb{J}\|}{\mathbf{n} - \mathbf{f}} + \frac{\|\mathbb{J}\|}{\mathbf{n}}\log(\mathbf{n}) + \|\mathbb{V}\|\right)$.

Conclusion

Efficient Byzantine learning is possible.

Blockchain applications

- Low-cost checkpoint protocols.
- Scalable storage for resilient systems.

Fault-tolerant high-performance data processing: ongoing work

- More at https://jhellings.nl/ and https://expolab.org/.
- Paper: https://doi.org/10.4230/LIPIcs.ICDT.2020.17.