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Towards high performance fault-tolerant data processing

Fault tolerance via full replication

Communication intensive: coordinate all steps of the system via consensus.
No scalability: adding replicas reduces performance.

Replicas can be malicious: read-only queries cannot be answered by single replicas.
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No sharding, no geo-aware data localization, no specialization.

Contradicts standard techniques used for high-performance data processing!



Towards our vision: specializing for read-only workloads
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Enabling data-hungry read-only workloads

Need to stream all data updates with low cost for all replicas involved.



The need for Byzantine learning

Definition
Let R be a cluster deciding on a sequence of transactions.
The Byzantine learning problem is the problem of sending the decided transactions from R

to a learner L such that:
> the learner L will eventually receive all decided transactions;

> the learner L will only receive decided transactions.

Practical requirements

> Minimizing overall communication.

> Load balancing among all replicas in R.



Background: Information dispersal algorithms

Definition

Let v be a value with storage size s = ||v/|.

An information dispersal algorithm can encode v in n pieces v’
such that v can be decoded from every set of n — f such pieces.

Theorem (Rabin 1989)
The IDA algorithm is an optimal information dispersal algorithm:

» Each piece v’ has size [ v ”-|
> The n —f pieces necessary for decoding have a total size of (n — f) [

L]~ v



The delayed-replication algorithm

Idea: R sends a journal to learner L

1. Partition the journal in sequences S of n transactions.
2. Replica rR; € R encodes S into the i-th IDA piece S;.

3. Replica rR; € R sends S; with a checksum C;(S) of S to L.
4

. L receives at least n — f distinct pieces and decodes S.

Observation (n > 2f)
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> Replica Rr; sends at mostB—[ -|+c< +1+c—O(|| I +C) bytes.

> Learner L receives at most n - B = O (||S]| + cn) bytes.



Communication by the delayed-replication algorithm
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Decoding S using simple checksums (n > 2f)

> Use checksums hash(S).
» The n — f non-faulty replicas will provide correct pieces.

> At least n — f > f messages with correct checksums.

First x hashes received by L

at least x — f good hashes

at most f faulty hashes

Wait until f + 1 hashes: hash(S).

> Compute intensive for learners: one can choose n — f out of n messages in (") ways
only one such choice is guaranteed to be correct!



Decoding S using tree checksums

Use Merkle-trees to construct checksums
Consider 8 replicas and a sequence S.
We construct the checksum Cs(S) of S (used by Rrs).

hO] 234567

h01 h23 h45 h67

h4567
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(%0) (%1) (52) (%3) (S4) (85) (Se) (57)

Construct a Merkle tree for pieces S, . .., S;.
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Decoding S using tree checksums

Use Merkle-trees to construct checksums
Consider 8 replicas and a sequence S.
We construct the checksum Cs(S) of S (used by Rs).

hO] 234567

h01 2 h4567

h01 h23 h45 h67

N

ho h hy h3 hy hs he hy
(%0) (%1) (52) (83) (S4) (85) (Se) (57)

Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].



Delayed-replication: Main result (n > 2f)

Theorem
Consider the learner L, replica r, and decided transactions T . The delayed-replication
algorithm with tree checksums guarantees

1.

L will learn T~;

2. L will receive at most |T"| messages with a total size of O (||7°|| + |7 | log n);
3.
4

. R will sent at most |T"|/n messages to L of size O (

L will only need at most |7 |/n decode steps;

17 1I+|7 1 logn
o .



Application: scalable storage for resilient systems

» Clusters typically need only a view V on the data to decide whether updates are valid.
» Clusters only need the full journal J for recovery.

> We can use delayed-replication to reduce the data each replica has to store.

Theorem
The storage cost per replica can be reduced from

J J
Ol +Vl) to O M+Ulog<n>+||vn).
n—f n



Conclusion

Efficient Byzantine learning is possible.

Blockchain applications

> Low-cost checkpoint protocols.

> Scalable storage for resilient systems.

Fault-tolerant high-performance data processing: ongoing work

> More at https://jhellings.nl/ and https://expolab.org/.
» Paper: https://doi.org/10.4230/LIPIcs.ICDT.2020.17.
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