
1/12

Coordination-free Byzantine Replication with Minimal

Communication Costs

Jelle Hellings Mohammad Sadoghi

Exploratory Systems Lab,

Department of Computer Science,

University of California, Davis, CA, USA

Creativity Unfolded
ExpoLab

2/12

Towards high performance fault-tolerant data processing

Fault tolerance via full replication

I Communication intensive: coordinate all steps of the system via consensus.

I No scalability : adding replicas reduces performance.

I Replicas can be malicious: read-only queries cannot be answered by single replicas.

I No sharding, no geo-aware data localization, no specialization.

Contradicts standard techniques used for high-performance data processing!

3/12

Towards our vision: specializing for read-only workloads

Read-only workloads

Updates
(e.g., write transactions)

ë

Malicious

2Analytics

2Data Provenance

2Machine Learning

2Visualization

Enabling data-hungry read-only workloads

Need to stream all data updates with low cost for all replicas involved.

3/12

Towards our vision: specializing for read-only workloads

Read-only workloads

Updates
(e.g., write transactions)

ë

Malicious

2Analytics

2Data Provenance

2Machine Learning

2Visualization

Enabling data-hungry read-only workloads

Need to stream all data updates with low cost for all replicas involved.

4/12

The need for Byzantine learning

Definition

Let R be a cluster deciding on a sequence of transactions.

The Byzantine learning problem is the problem of sending the decided transactions from R

to a learner l such that:

I the learner l will eventually receive all decided transactions;

I the learner l will only receive decided transactions.

Practical requirements

I Minimizing overall communication.

I Load balancing among all replicas in R.

5/12

Background: Information dispersal algorithms

Definition

Let v be a value with storage size s = ‖v ‖.

An information dispersal algorithm can encode v in n pieces v
′

such that v can be decoded from every set of n − f such pieces.

Theorem (Rabin 1989)

The IDA algorithm is an optimal information dispersal algorithm:

I Each piece v
′
has size

⌈
‖v ‖

n−f

⌉
.

I The n − f pieces necessary for decoding have a total size of (n − f)
⌈
‖v ‖

(n−f)

⌉
≈ ‖v ‖.

6/12

The delayed-replication algorithm

Idea: R sends a journal to learner l

1. Partition the journal in sequences S of n transactions.

2. Replica ri ∈ R encodes S into the i-th IDA piece Si .

3. Replica ri ∈ R sends Si with a checksum Ci(S) of S to l.

4. l receives at least n − f distinct pieces and decodes S.

Observation (n > 2f)

I Replica ri sends at most B =
⌈
‖S ‖

n−f

⌉
+ c ≤

2‖S ‖

n + 1 + c = O
(
‖S ‖

n + c
)

bytes.

I Learner l receives at most n · B = O (‖S‖ + cn) bytes.

7/12

Communication by the delayed-replication algorithm

b

r2

r1

r0

l

1 2 3 4 5 6 7 8 9 10 11 12

Update decision −→

No dispersal First 4 update decisions Second 4 update decisions

Learned

J[0 : 4]

Learned

J[4 : 8]

8/12

Decoding S using simple checksums (n > 2f)

I Use checksums hash(S).

I The n − f non-faulty replicas will provide correct pieces.

I At least n − f > f messages with correct checksums.

l

First x hashes received by l

Wait until f + 1 ≤ g identical hashes: hash(S).

G

F

at least x − f good hashes

at most f faulty hashes

I Compute intensive for learners: one can choose n− f out of n messages in

(n
n−f

)
ways

only one such choice is guaranteed to be correct!

9/12

Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Construct a Merkle tree for pieces S0, . . . , S7.

9/12

Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Determine the path from root to S5.

9/12

Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].

10/12

Delayed-replication: Main result (n > 2f)

Theorem

Consider the learner l, replica r, and decided transactions T . The delayed-replication

algorithm with tree checksums guarantees

1. l will learn T ;

2. l will receive at most |T | messages with a total size of O (‖T ‖ + |T | log n);
3. l will only need at most |T |/n decode steps;

4. r will sent at most |T |/n messages to l of size O

(
‖T ‖+ |T | log n

n

)
.

11/12

Application: scalable storage for resilient systems

I Clusters typically need only a view V on the data to decide whether updates are valid.

I Clusters only need the full journal J for recovery .

I We can use delayed-replication to reduce the data each replica has to store.

Theorem

The storage cost per replica can be reduced from

O (‖J‖ + ‖V‖) to O

(
‖J‖

n − f
+
|J|

n
log(n) + ‖V‖

)
.

12/12

Conclusion

E�icient Byzantine learning is possible.

Blockchain applications

I Low-cost checkpoint protocols.

I Scalable storage for resilient systems.

Fault-tolerant high-performance data processing: ongoing work

I More at https://jhellings.nl/ and https://expolab.org/.

I Paper: https://doi.org/10.4230/LIPIcs.ICDT.2020.17.

https://jhellings.nl/
https://expolab.org/
https://doi.org/10.4230/LIPIcs.ICDT.2020.17

