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Towards high performance fault-tolerant data processing

Fault tolerance via full replication

I Communication intensive: coordinate all steps of the system via consensus.

I No scalability : adding replicas reduces performance.

I Replicas can be malicious: read-only queries cannot be answered by single replicas.

I No sharding, no geo-aware data localization, no specialization.

Contradicts standard techniques used for high-performance data processing!
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Towards our vision: specializing for read-only workloads

Read-only workloads

Updates
(e.g., write transactions)
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Malicious

2Analytics

2Data Provenance

2Machine Learning

2Visualization

Enabling data-hungry read-only workloads

Need to stream all data updates with low cost for all replicas involved.
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The need for Byzantine learning

Definition

Let R be a cluster deciding on a sequence of transactions.

The Byzantine learning problem is the problem of sending the decided transactions from R

to a learner l such that:

I the learner l will eventually receive all decided transactions;

I the learner l will only receive decided transactions.

Practical requirements

I Minimizing overall communication.

I Load balancing among all replicas in R.
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Background: Information dispersal algorithms

Definition

Let v be a value with storage size s = ‖v ‖.

An information dispersal algorithm can encode v in n pieces v
′

such that v can be decoded from every set of n − f such pieces.

Theorem (Rabin 1989)

The IDA algorithm is an optimal information dispersal algorithm:

I Each piece v
′
has size

⌈
‖v ‖

n−f

⌉
.

I The n − f pieces necessary for decoding have a total size of (n − f)
⌈
‖v ‖

(n−f)

⌉
≈ ‖v ‖.
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The delayed-replication algorithm

Idea: R sends a journal to learner l

1. Partition the journal in sequences S of n transactions.

2. Replica ri ∈ R encodes S into the i-th IDA piece Si .

3. Replica ri ∈ R sends Si with a checksum Ci(S) of S to l.

4. l receives at least n − f distinct pieces and decodes S.

Observation (n > 2f)

I Replica ri sends at most B =
⌈
‖S ‖

n−f

⌉
+ c ≤

2‖S ‖

n + 1 + c = O
(
‖S ‖

n + c
)

bytes.

I Learner l receives at most n · B = O (‖S‖ + cn) bytes.
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Communication by the delayed-replication algorithm
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Decoding S using simple checksums (n > 2f)

I Use checksums hash(S).

I The n − f non-faulty replicas will provide correct pieces.

I At least n − f > f messages with correct checksums.

l

First x hashes received by l

Wait until f + 1 ≤ g identical hashes: hash(S).

G

F

at least x − f good hashes

at most f faulty hashes

I Compute intensive for learners: one can choose n− f out of n messages in

( n
n−f

)
ways

only one such choice is guaranteed to be correct!
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Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).
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h01234567

Construct a Merkle tree for pieces S0, . . . , S7.
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Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).
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Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].
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Delayed-replication: Main result (n > 2f)

Theorem

Consider the learner l, replica r, and decided transactions T . The delayed-replication

algorithm with tree checksums guarantees

1. l will learn T ;

2. l will receive at most |T | messages with a total size of O (‖T ‖ + |T | log n);
3. l will only need at most |T |/n decode steps;

4. r will sent at most |T |/n messages to l of size O

(
‖T ‖+ |T | log n

n

)
.
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Application: scalable storage for resilient systems

I Clusters typically need only a view V on the data to decide whether updates are valid.

I Clusters only need the full journal J for recovery .

I We can use delayed-replication to reduce the data each replica has to store.

Theorem

The storage cost per replica can be reduced from

O (‖J‖ + ‖V‖) to O

(
‖J‖

n − f
+
|J|

n
log(n) + ‖V‖

)
.
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Conclusion

E�icient Byzantine learning is possible.

Blockchain applications

I Low-cost checkpoint protocols.

I Scalable storage for resilient systems.

Fault-tolerant high-performance data processing: ongoing work

I More at https://jhellings.nl/ and https://expolab.org/.

I Paper: https://doi.org/10.4230/LIPIcs.ICDT.2020.17.

https://jhellings.nl/
https://expolab.org/
https://doi.org/10.4230/LIPIcs.ICDT.2020.17

