Coordination-free Byzantine Replication with Minimal
Communication Costs

Jelle Hellings ~ Mohammad Sadoghi

Exploratory Systems Lab,
Department of Computer Science,
University of California, Davis, CA, USA

= Expolab

UNIVERSITY OF CALIFORNIA Creativity Unfolded

Towards high performance fault-tolerant data processing

Fault tolerance via full replication

Communication intensive: coordinate all steps of the system via consensus.
No scalability: adding replicas reduces performance.

Replicas can be malicious: read-only queries cannot be answered by single replicas.

vV v.v Y

No sharding, no geo-aware data localization, no specialization.

Contradicts standard techniques used for high-performance data processing!

Towards our vision: specializing for read-only workloads

OAnalytics
Updates ‘ QData Provenance
(e.g., write transactions) ‘ QMachlne Learning
¢V|suahzatlon

Malicious Read-only workloads

Towards our vision: specializing for read-only workloads

OAnalytics
Updates ‘ QData Provenance
(e.g., write transactions) ‘ QMachlne Learning
¢V|suahzatlon

Malicious Read-only workloads

Enabling data-hungry read-only workloads

Need to stream all data updates with low cost for all replicas involved.

The need for Byzantine learning

Definition
Let R be a cluster deciding on a sequence of transactions.
The Byzantine learning problem is the problem of sending the decided transactions from R

to a learner L such that:
> the learner L will eventually receive all decided transactions;

> the learner L will only receive decided transactions.

Practical requirements

> Minimizing overall communication.

> Load balancing among all replicas in R.

Background: Information dispersal algorithms

Definition

Let v be a value with storage size s = ||v/|.

An information dispersal algorithm can encode v in n pieces v’
such that v can be decoded from every set of n — f such pieces.

Theorem (Rabin 1989)
The IDA algorithm is an optimal information dispersal algorithm:

» Each piece v’ has size [v ”-|
> The n —f pieces necessary for decoding have a total size of (n — f) [

L]~ v

The delayed-replication algorithm

Idea: R sends a journal to learner L

1. Partition the journal in sequences S of n transactions.
2. Replica rR; € R encodes S into the i-th IDA piece S;.

3. Replica rR; € R sends S; with a checksum C;(S) of S to L.
4

. L receives at least n — f distinct pieces and decodes S.

Observation (n > 2f)

ISl 20Is1l

> Replica Rr; sends at mostB—[-|+c< +1+c—O(|| I +C) bytes.

> Learner L receives at most n - B = O (||S]| + cn) bytes.

Communication by the delayed-replication algorithm

Ro

R1

Ry

Update decision —

1

2 3

4

9 10 11 12

Learned
J[o: 4]

AN
Learned
J[4 : 8]

~
No dispersal

=
First 4 update decisions

~
Second 4 update decisions

Decoding S using simple checksums (n > 2f)

> Use checksums hash(S).
» The n — f non-faulty replicas will provide correct pieces.

> At least n — f > f messages with correct checksums.

First x hashes received by L

at least x — f good hashes

at most f faulty hashes

Wait until f + 1 hashes: hash(S).

> Compute intensive for learners: one can choose n — f out of n messages in (") ways
only one such choice is guaranteed to be correct!

Decoding S using tree checksums

Use Merkle-trees to construct checksums
Consider 8 replicas and a sequence S.
We construct the checksum Cs(S) of S (used by Rrs).

hO] 234567

h01 h23 h45 h67

h4567

ho h hy h3 hy hs he hy
(%0) (%1) (52) (%3) (S4) (85) (Se) (57)

Construct a Merkle tree for pieces S, . .., S;.

Decoding S using tree checksums

Use Merkle-trees to construct checksums
Consider 8 replicas and a sequence S.
We construct the checksum Cs(S) of S (used by Rs).

hO] 234567

h012

ho h hy h3 hy hs he hy
(%0) (%1) (52) (%3) (S4) (85) (Se) (57)

Determine the path from root to Ss.

Decoding S using tree checksums

Use Merkle-trees to construct checksums
Consider 8 replicas and a sequence S.
We construct the checksum Cs(S) of S (used by Rs).

hO] 234567

h01 2 h4567

h01 h23 h45 h67

N

ho h hy h3 hy hs he hy
(%0) (%1) (52) (83) (S4) (85) (Se) (57)

Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].

Delayed-replication: Main result (n > 2f)

Theorem
Consider the learner L, replica r, and decided transactions T . The delayed-replication
algorithm with tree checksums guarantees

1.

L will learn T~;

2. L will receive at most |T"| messages with a total size of O (||7°|| + |7 | log n);
3.
4

. R will sent at most |T"|/n messages to L of size O (

L will only need at most |7 |/n decode steps;

17 1I+|7 1 logn
o .

Application: scalable storage for resilient systems

» Clusters typically need only a view V on the data to decide whether updates are valid.
» Clusters only need the full journal J for recovery.

> We can use delayed-replication to reduce the data each replica has to store.

Theorem
The storage cost per replica can be reduced from

J J
Ol +Vl) to O M+Ulog<n>+||vn).
n—f n

Conclusion

Efficient Byzantine learning is possible.

Blockchain applications

> Low-cost checkpoint protocols.

> Scalable storage for resilient systems.

Fault-tolerant high-performance data processing: ongoing work

> More at https://jhellings.nl/ and https://expolab.org/.
» Paper: https://doi.org/10.4230/LIPIcs.ICDT.2020.17.

https://jhellings.nl/
https://expolab.org/
https://doi.org/10.4230/LIPIcs.ICDT.2020.17

