
Motivations L-Store Evaluation Conclusions

L-Store: A Real-time OLTP and OLAP System

Mohammad Sadoghi†

Souvik Bhattacharjee‡, Bishwaranjan Bhattacharjee#, Mustafa Canim#

†Exploratory Systems Lab
† University of California, Davis

‡ University of Maryland, College Park
IBM T.J. Watson

EDBT’18 (March 27, 2018)

Mohammad Sadoghi (UC Davis) EDBT’18 1 / 16

Motivations L-Store Evaluation Conclusions

Data Management at Macroscale: The Four V’s of Big Data

John Doe

Mohammad Sadoghi (UC Davis) EDBT’18 2 / 16

Motivations L-Store Evaluation Conclusions

Data Management at Macroscale: The Four V’s of Big Data

John Doe

Mohammad Sadoghi (UC Davis) EDBT’18 2 / 16

Motivations L-Store Evaluation Conclusions

Data Management at Microscale: Volume & Velocity

OLTP
(Write-optimized)

Data Velocity

Sales

Mohammad Sadoghi (UC Davis) EDBT’18 2 / 16

Motivations L-Store Evaluation Conclusions

Data Management at Microscale: Volume & Velocity

OLAP
(Read-optimized) OLTP

(Write-optimized)

Extract-Transform-Load
(ETL)

Data Velocity

Sales

Reports

Data Volume

Data is
Stale

Mohammad Sadoghi (UC Davis) EDBT’18 2 / 16

Motivations L-Store Evaluation Conclusions

Data Management at Microscale: Volume & Velocity

OLAP
(Read-optimized) OLTP

(Write-optimized)

Extract-Transform-Load
(ETL)

Data Volume

Data Velocity

Sales

Reports

Mohammad Sadoghi (UC Davis) EDBT’18 2 / 16

Motivations L-Store Evaluation Conclusions

One Size Does not Fit All As of 2012

Mohammad Sadoghi (UC Davis) EDBT’18 3 / 16

Motivations L-Store Evaluation Conclusions

One Size Does not Fit All As of 2017

Mohammad Sadoghi (UC Davis) EDBT’18 3 / 16

Motivations L-Store Evaluation Conclusions

Data Management at Microscale: Volume & Velocity

OLAP+OLTP
(Read & Write-

optimized)
Reports

Sales

Mohammad Sadoghi (UC Davis) EDBT’18 4 / 16

Motivations L-Store Evaluation Conclusions

Storage Layout Conflict

Read Optimized
(compressed, read-only pages)

Write Optimized
(uncompressed in-place updates)

Columnar StorageRow-based Storage

Write-optimized (i.e., uncompressed & row-based) vs. read-optimized (i.e.,
compressed & column-based) layouts

Mohammad Sadoghi (UC Davis) EDBT’18 5 / 16

Motivations L-Store Evaluation Conclusions

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)

Mohammad Sadoghi (UC Davis) EDBT’18 6 / 16

Motivations L-Store Evaluation Conclusions

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)

Mohammad Sadoghi (UC Davis) EDBT’18 6 / 16

Motivations L-Store Evaluation Conclusions

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)

Mohammad Sadoghi (UC Davis) EDBT’18 6 / 16

Motivations L-Store Evaluation Conclusions

Lineage-based Storage Architecture (LSA): Intuition

Base Pages
(Read-only)

Tail Pages
(Append-only)

Index

Lineage Mapping
(indirection layer, stable LID-to-RID mapping)

 Base
Version

(anchored RIDs)

 Latest
Version

(monotonically
increasing RIDs)

In-page Lineage Tacking

Points to
Stable LIDs

(i.e., anchored RID)

RIDi

RIDi

RIDk

RIDj

Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi (UC Davis) EDBT’18 7 / 16

Motivations L-Store Evaluation Conclusions

Lineage-based Storage Architecture (LSA): Intuition

Base Pages
(Read-only)

Tail Pages
(Append-only)

Index

Lineage Mapping
(indirection layer, stable LID-to-RID mapping)

 Base
Version

(anchored RIDs)

 Latest
Version

(monotonically
increasing RIDs)

Append-only
Updates

(physical update
independence)

In-page Lineage Tacking

Points to
Stable LIDs

(i.e., anchored RID)

Monotonically
Increasing Lineage

(updates are assigned RIDs
in an increasing order)

RIDi

RIDi

RIDk

RIDj

Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi (UC Davis) EDBT’18 7 / 16

Motivations L-Store Evaluation Conclusions

Lineage-based Storage Architecture (LSA): Intuition

Base Pages
(Read-only)

Tail Pages
(Append-only)

Index

Lineage Mapping
(indirection layer, stable LID-to-RID mapping)

 Base
Version

(stable
anchored RIDs)

 Latest
Version

(monotonically
increasing RIDs)

Append-only
Updates

(physical update
independence)

Lazy Update
Consolidation

(snapshot reconstruction via lineage
mapping & in-page tracking)

In-page Lineage Tacking

In-page Lineage Tacking

Data Block RIDs
Remain Unchanged

(stable reference, anchored RIDs)

Points to
Stable LIDs

(i.e., anchored RID)

Monotonically Increasing
In-page Lineage

Monotonically
Increasing Lineage

(updates are assigned RIDs
in an increasing order)

RIDi

Consolidated Data
(Read-only)

RIDi

RIDk

RIDj

Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi (UC Davis) EDBT’18 7 / 16

Motivations L-Store Evaluation Conclusions

Lineage-based Storage Architecture (LSA): Overview

Columnar Storage
Base Pages
(read-only)

Tail Pages
(append-only)

Range
Partitioning

Pa
ge

 D
ir

ec
to

ry

Record
(spanning over a set of aligned columns)

Overview of the lineage-based storage architecture
(base pages and tail pages are handled identically at the storage layer)

Mohammad Sadoghi (UC Davis) EDBT’18 8 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Detailed Design

Columnar Storage

Range Partitioning

Base Pages
(read-only)

Read Optimized
(compressed, read-only pages)

Records are range-partitioned and compressed into a set of ready-only base pages
(accelerating analytical queries)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Updated Columns

Corresponding
Columns

Base Pages
(read-only)Tail Pages

(append-only)

Read Optimized
(compressed, read-only pages)

Recent updates for a range of records are clustered in their tails pages
(transforming costly point updates into an amortized analytical-like query)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Updated Columns

Base Pages
(read-only)Tail Pages

(append-only)

Different Versions
of the Record

Base Record
(older version)

Tail Record
(latest version)

Read Optimized
(compressed, read-only pages)

Recent updates for a range of records are clustered in their tails pages
(transforming costly point updates into an amortized analytical-like query)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Pre-allocated Space
(lazily)

Base Pages
(read-only)Tail Pages

(append-only)

Read Optimized
(compressed, read-only pages)

Recent updates are strictly appended, uncompressed in the pre-allocated space
(eliminating the read/write contention)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Indirection Column
(uncompressed, in-place update)

Forward Pointer to the
Latest Version of the Record

Indirection Column
(back pointer to the previous version)

Read Optimized
(compressed, read-only pages)

Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Indirection Column
(uncompressed, in-place update)

Indirection Column
(back pointer to the previous version)

New Version

Read Optimized
(compressed, read-only pages)

Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Indirection Column
(uncompressed, in-place update)

Indirection Column
(back pointer to the previous version)

New Version

Read Optimized
(compressed, read-only pages)

Backward
Pointer

Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Contention-free Merge

Write Optimized
(uncompressed, append-only updates)

Merge Queue
(tail pages to be merged)

Consecutive Set of
Committed Updates

Indirection Column
(uncompressed, in-place update)

Read Optimized
(compressed, read-only pages)

Contention-free merging of only stable data: read-only and committed data
(no need to block on-going and new transactions)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Contention-free Merge
Read Optimized

(compressed, read-only pages)

Write Optimized
(uncompressed, append-only updates)

⋈ =

Asynchronous Lazy Merge
(committed, consecutives updates)

Indirection Column
(uncompressed, in-place update)

Merge Queue
(tail pages to be merged)

Lazy independent merging of base pages with their corresponding tail pages
(resembling a local left outer-join of the base and tail pages)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Contention-free Merge

Write Optimized
(uncompressed, append-only updates)

In-page, Independent
Lineage Tracking

Asynchronous Lazy Merge
(committed, consecutives updates)

⋈ =

Indirection Column
(uncompressed, in-place update)

Read Optimized
(compressed, read-only pages)

Independently tracking the lineage information within every page
(no need to coordinate merges among different columns of the same records)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Epoch-based Contention-free De-allocation

Epoch-based De-allocation
(longest running query)

Page Directory

Indirection Column
(uncompressed, in-place update)

Write Optimized
(uncompressed, append-only updates)

Read Optimized
(compressed, read-only pages)

Asynchronous Lazy Merge

⋈ =

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Epoch-based Contention-free De-allocation

In-page, Independent
Lineage Tracking

Page Directory

Indirection Column
(uncompressed, in-place update)

Write Optimized
(uncompressed, append-only updates)

Epoch-based De-allocation
(longest running query)

Read Optimized
(compressed, read-only pages)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Epoch-based Contention-free De-allocation

Page Directory

Indirection Column
(uncompressed, in-place update)

Write Optimized
(uncompressed, append-only updates)

Epoch-based De-allocation
(longest running query)

Asynchronous Lazy Merge

⋈ =

Read Optimized
(compressed, read-only pages)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Epoch-based Contention-free De-allocation

Page Directory

Indirection Column
(uncompressed, in-place update)

Write Optimized
(uncompressed, append-only updates)

Epoch-based De-allocation
(longest running query)

Asynchronous Lazy Merge

⋈ =

Read Optimized
(compressed, read-only pages)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

L-Store: Epoch-based Contention-free De-allocation

Epoch-based De-allocation
(longest running query)

In-page, Independent
Lineage Tracking

Write Optimized
(uncompressed, append-only updates)

Page Directory

Indirection Column
(uncompressed, in-place update)

Asynchronous Lazy Merge

⋈ =

Read Optimized
(compressed, read-only pages)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) EDBT’18 9 / 16

Motivations L-Store Evaluation Conclusions

Experimental Analysis

Mohammad Sadoghi (UC Davis) EDBT’18 10 / 16

Motivations L-Store Evaluation Conclusions

Experimental Settings

Hardware:

2 × 6-core Intel(R) Xeon(R) CPU E5-2430 @ 2.20GHz, 64GB, 15 MB L3 cache

Workload: Extended Microsoft Hekaton Benchmark

Comparison with In-place Update + History and Delta + Blocking Merge
Effect of varying contention levels
Effect of varying the read/write ratio of short update transactions
Effect of merge frequency on scan
Effect of varying the number of short update vs. long read-only transactions
Effect of varying L-Store data layouts (row vs. columnar)
Effect of varying the percentage of columns read in point queries
Comparison with log-structured storage architecture (LevelDB)

Mohammad Sadoghi (UC Davis) EDBT’18 11 / 16

Motivations L-Store Evaluation Conclusions

Effect of Varying Contention Levels

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

0

0.5

1

1.5

2

0 5 10 15 20 25

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

Achieving up to 40× as increasing the update contention

Mohammad Sadoghi (UC Davis) EDBT’18 12 / 16

Motivations L-Store Evaluation Conclusions

Effect of Merge Frequency on Scan Performance

0

0.5

1

1.5

2

2.5

4K 8K 16K 32K 64KSc
an

 E
xe

cu
ti

o
n

 T
im

e
 (

in
 s

e
co

n
d

s)

Number of Tail Records Processed per Merge

Mixed OLTP + OLAP Workload; Low Contention
(1 Scan + 1 Merge Threads, Page Size = 32 KB)

Scan Performance
(4 Update Threads)

Scan Performance
(14 Update Threads)

Merge process is essential in maintaining efficient scan performance

Mohammad Sadoghi (UC Davis) EDBT’18 13 / 16

Motivations L-Store Evaluation Conclusions

Effect of Mixed Workloads: Update Performance

0

0.2

0.4

0.6

0.8

1

1 4 8 12 16U
p

d
at

e
 T

h
ro

u
gh

p
u

t
(m

ill
io

n
 o

f
tx

n
/s

)

Number of Parallel Update Transactions

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

Lineage-based Data
Store (L-Store)

In-place Update +
History

Delta + Blocking
Merge

Eliminating latching & locking results in a substantial performance improvement

Mohammad Sadoghi (UC Davis) EDBT’18 14 / 16

Motivations L-Store Evaluation Conclusions

Effect of Mixed Workloads: Read Performance

0

200

400

600

800

1 5 9 13 16

R
e

ad
 T

h
ro

u
gh

p
u

t
(t

xn
/s

)

Number of Parallel Read-only Transactions

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

Lineage-based Data
Store (L-Store)

In-place Update +
History

Delta + Blocking
Merge

Coping with tens of update threads with a single merge thread

Mohammad Sadoghi (UC Davis) EDBT’18 14 / 16

Motivations L-Store Evaluation Conclusions

L-Store Key Contributions

Unifying OLAP & OLTP by introducing lineage-based storage
architecture (LSA)

LSA is a native multi-version, columnar storage model that lazily &
independently stages data from a write-optimized layout into a
read-optimized one

Contention-free merging of only stable data without blocking ongoing
or incoming transactions

Contention-free page de-allocation without draining ongoing
transactions

L-Store outperforms in-place update & delta approaches by factor of up
to 8× on mixed OLTP/OLAP workloads and up to 40× on
update-intensive workloads

Mohammad Sadoghi (UC Davis) EDBT’18 15 / 16

Motivations L-Store Evaluation Conclusions

Questions?
Thank you!

Exploratory Systems Lab (ExpoLab)
Website: https://msadoghi.github.io/

Mohammad Sadoghi (UC Davis) EDBT’18 16 / 16

	Data Management at Microscale
	Combining Volume & Velocity: Lineage-based Storage Architecture
	Conclusions

