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One Size Does not Fit All As of 2012
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Storage Layout Conflict

Read Optimized
(compressed, read-only pages)

Write Optimized
(uncompressed in-place updates)

Columnar StorageRow-based Storage

Write-optimized (i.e., uncompressed & row-based) vs. read-optimized (i.e.,
compressed & column-based) layouts
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Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)
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Lineage-based Storage Architecture (LSA): Intuition
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Lineage-based Storage Architecture (LSA): Overview

Columnar Storage
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Overview of the lineage-based storage architecture
(base pages and tail pages are handled identically at the storage layer)
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L-Store: Detailed Design

Columnar Storage

Range Partitioning

Base Pages
(read-only)

Read Optimized
(compressed, read-only pages)

Records are range-partitioned and compressed into a set of ready-only base pages
(accelerating analytical queries)
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L-Store: Detailed Design
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Recent updates are strictly appended, uncompressed in the pre-allocated space
(eliminating the read/write contention)
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L-Store: Contention-free Merge
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(no need to block on-going and new transactions)
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L-Store: Contention-free Merge
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Lazy independent merging of base pages with their corresponding tail pages
(resembling a local left outer-join of the base and tail pages)
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L-Store: Contention-free Merge
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L-Store: Epoch-based Contention-free De-allocation

Epoch-based De-allocation
(longest running query)

Page Directory
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Read Optimized
(compressed, read-only pages)

Asynchronous Lazy Merge 

⋈ =

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)
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Experimental Analysis
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Experimental Settings

Hardware:

2 × 6-core Intel(R) Xeon(R) CPU E5-2430 @ 2.20GHz, 64GB, 15 MB L3 cache

Workload: Extended Microsoft Hekaton Benchmark

Comparison with In-place Update + History and Delta + Blocking Merge
Effect of varying contention levels
Effect of varying the read/write ratio of short update transactions
Effect of merge frequency on scan
Effect of varying the number of short update vs. long read-only transactions
Effect of varying L-Store data layouts (row vs. columnar)
Effect of varying the percentage of columns read in point queries
Comparison with log-structured storage architecture (LevelDB)
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Effect of Varying Contention Levels
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Achieving up to 40× as increasing the update contention
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Effect of Merge Frequency on Scan Performance
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Merge process is essential in maintaining efficient scan performance
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Effect of Mixed Workloads: Update Performance
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Eliminating latching & locking results in a substantial performance improvement
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Effect of Mixed Workloads: Read Performance
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L-Store Key Contributions

Unifying OLAP & OLTP by introducing lineage-based storage
architecture (LSA)

LSA is a native multi-version, columnar storage model that lazily &
independently stages data from a write-optimized layout into a
read-optimized one

Contention-free merging of only stable data without blocking ongoing
or incoming transactions

Contention-free page de-allocation without draining ongoing
transactions

L-Store outperforms in-place update & delta approaches by factor of up
to 8× on mixed OLTP/OLAP workloads and up to 40× on
update-intensive workloads
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Questions?
Thank you!

Exploratory Systems Lab (ExpoLab)
Website: https://msadoghi.github.io/
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