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Abstract. Many graph query languages use, at their core, path queries
that yield node pairs that are connected by a path of interest. For the
end-user, such node pairs only give limited insight as to why this query
result is obtained, as the pair does not directly identify the underlying
path of interest. To address this limitation of path queries, we propose
the single-path semantics, which evaluates path queries to, for each node
pair (m,n), a single path from m to n satisfying the conditions of the
query. To put our proposal in practice, we provide an efficient algorithm
for evaluating context-free path queries, a particular powerful type of path
queries, using the single-path semantics. Additionally, we perform a short
evaluation of our techniques that shows that the single-path semantics is
practically feasible, even when query results grow large.
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1 Introduction

The graph data model is one of the most versatile and natural data models in
use: graph-structured data is everywhere and examples can be found in family
trees, social networks, process models, gene networks, XML data, and RDF
data [1,2,9,12,30]. As an example, consider the small social network visualized in
Figure 1 in which nodes represent peoples and edges represent the relationships
between people.

A central step in the analysis of such graph data is the ability to query
the data for relationships of interest. For this purpose, many different query
languages have been developed, including XPath for querying XML data [8,9,11],
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Fig. 1. A typical example of graph data: a social network relating peoples.
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SPARQL for querying RDF data [19,30], the graph query languages GX-
Path [24], Cypher [28], and Gremlin [29], and formal verification languages
such as PDL, KAT, CTL, and LTL [12,22,23]. At their core, these graph query
languages depend on path queries that can be used to express indirect relation-
ships that can be derived from the data [2]. Examples of such path queries are the
well-known regular path queries [5] and the context-free path queries [18,20,23,31].
Unfortunately, path queries are typically evaluated to only a set of node pairs
(m,n) that are connected by a path of interest, which gives little insight in the
way pairs (m,n) are obtained, limiting their capabilities for graph analytics.

Example 1. Let G be the social network visualized in Figure 1. The path query
indirectFriendOf = friendOf+, expressed by a regular expression, will return the
derived relationship between pairs (m,n) such that m is a friend of n, or a
friend-of-a-friend of n, or a friend-of-a-friend-of-a-friend of n, and so on. The
pair (Alice, Eve) is in the result of evaluating indirectFriendOf on graph G.
Unfortunately, Alice cannot use this result to determine whom of her friends can
help her to get in contact with Eve, and Alice will have to further analyze the
underlying graph data.

Example 1 illustrates the need to answer path queries with the underlying
paths of interest inspected by these queries. To address this need, we propose the
single-path semantics for evaluating path queries: using the single-path semantics,
a path query will evaluate to a shortest path connecting node pair (m,n) (for
each node pair in the query result).

Example 2. Consider the setting of Example 1. Evaluation of indirectFriendOf us-
ing the single path semantics can result in the path “Alice friendOf Bob friendOf
Eve”, from which Alice can derive a way to contact Eve. As the single path
semantics requires a single and shortest path between node pairs, the path
“Alice friendOf Carol friendOf Dan friendOf Eve” cannot be in the output.

The need for the single-path semantics extends beyond the above toy example.
Not only can single-path semantics provide more relevant information to end-users,
the single-path semantics can also aid in graph analytics and data exploration,
and can be used to provide data provenance for traditional path queries [10],
this by providing paths that show why a path query includes a certain node pair
in its output. Furthermore, in the large-scale graph data setting in which many
complex path queries are evaluated, there is a need for tools to support query
debugging [21], for which the single-path semantics can also be of use.

In this paper, we deal with the issues outlined by proposing the single-path
semantics. We focus our study on the context-free path queries, as these are
a particular powerful type of path queries that cannot only express all typical
path queries (e.g. [5,20]), but also have applications in model checking [23],
bio-informatics [31], and parser construction [17]. In specific, we formalize the
single-path semantics, introduce the algorithm MinimizeSetGG that provides
efficient evaluation of context-free path queries on graphs using the single-path
semantics, and evaluate the performance of MinimizeSetGG in practice. Our
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results show promise, as MinimizeSetGG can easily answer queries whose results
contains tens-of-millions of paths, even if these paths have considerable lengths.

2 Preliminaries

First, we introduce the terminology and notation used throughout this paper.
Let Σ be a set of symbols. We call a sequence s = σ1 . . . σn of symbols,

σ1, . . . , σn ∈ Σ, a string over Σ. We write |s| = n to denote the length of s. The
empty string is denoted by ε and we usually treat individual symbols as strings
of length one. The concatenation of two strings s1 and s2 is denoted by s1 ◦ s2.
We denote the set of all strings over Σ by Σ∗. A language over Σ is a (possibly
infinite) set of strings over Σ.

A graph is a triple G = (V, Σ, δ), in which V is a finite set of nodes, Σ is a
finite set of alphabet symbols used as edge labels, and δ ⊆ V×Σ×V is a finite set
of labeled edges. To simplify presentation, we assume that V and Σ do not overlap
(V ∩ Σ = ∅). A path in G is a sequence π = m1 σ1 m2 . . .mn−1 σn−1 mn such
that, for every mi σi mi+1 in the sequence, 1 ≤ i < n, we have (mi, σi,mi+1) ∈ δ.
We write m1πmn to indicate that π is a path starting at node m1 and ending
at node mn. We write |π| = n − 1 to denote the length of π and we write
trace(π) = σ1 . . . σn−1 to denote the trace of π, the string represented by the
sequence of edge labels in π.

A path query q is specified by a language L that contains all traces of
paths of interest, e.g., via a regular expression (RPQs) or via a context-free
grammar (CFPQs). The evaluation of q on graph G using the standard relational
semantics simply consists of all node pairs that are connected by paths whose
trace is in L. To denote the evaluation of q on G, we write [[q]]G, and we have
[[q]]G = {(m,n) | ∃ path mπn in G with trace(π) ∈ L}.

Example 3. In Example 1, the query indirectFriendOf was expressed by the regular
expression friendOf+. This regular expression represents the language

L = {friendOf, friendOf ◦ friendOf, friendOf ◦ friendOf ◦ friendOf, . . . }.

We have (Alice, Eve) ∈ [[indirectFriendOf]]G, with G the graph in Figure 1, as
there exists a path π = “Alice friendOf Bob friendOf Eve” with trace(π) ∈ L.

A grammar is a triple C = (N , Σ,P), in which N is a set of non-terminals,
Σ is a finite set of alphabet symbols, and P is a set of production rules. We
require that N and Σ do not overlap (N ∩Σ = ∅). The set of production rules, P ,
consists of production rules of the form a 7→ b c or a 7→ σ, in which a,b,c ∈ N
and σ ∈ Σ.

Each non-terminal in N represents a language over Σ: the production rules
in P describe how to produce strings out of non-terminals via rewrite steps. To
illustrate this, consider a string s = s1 ◦ a ◦ s2 in which s1, s2 ∈ (N ∪Σ)

∗
and

a ∈ N . If there exists a production rule (a 7→ s′) ∈ P, then we can rewrite s
into s1 ◦ s′ ◦ s2 by applying the rewrite a 7→ s′. We write s →∗P s′ if s can be
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rewritten into s′ using production rules in P, and we write s→+
P s
′ if s→∗P s′

and at least one rewrite step is necessary to rewrite s into s′.
The language of non-terminal a ∈ N is defined by L(C ;a) = {s ∈ Σ∗ | a→∗P

s}. Given a grammar with non-terminal a, we simply write a to denote the path
query based on the language L(C ;a).

Example 4. Consider the grammar C = (N , Σ,P) in which N = {a}, Σ =
{friendOf}, and P = {a→ friendOf,a→ a a}. The language L(C ;a) is equivalent
to the language L of Example 3. Hence, we have (Alice, Eve) ∈ [[a]]G, in which
G is the graph visualized in Figure 1.

3 The single-path semantics

in Section 2, we already introduced the typical relational semantics of path
queries. Unfortunately, the step toward path-based semantics—in which a path
query yields paths mπn instead of node pairs (m,n)—is not straightforward.
Even in basic situations, the resulting set of paths can already be unbounded in
size, making it impossible to simply evaluate to such a set:

Example 5. Consider Example 1 and the graph G visualized in Figure 1. This
graph is cyclic, as there is a path “Alice friendOf Carol friendOf Dan friendOf
Eve friendOf Bob friendOf Alice”. Hence, we can make paths of arbitrary lengths
that match the query indirectFriendOf, and the set of all paths matching the
query is unbounded in size.

Restricting the paths considered in the evaluation, e.g., to simple paths,
assures that the set of paths considered is finite. Unfortunately, changing the paths
considered during evaluation defeats the purpose of path-based semantics as a data
provenance and debugging tool for normal path queries. Moreover, it is well-known
that such restrictions make query evaluation prohibitive expensive [2,3,7,25].
Restricting the number of paths in the result, e.g., to a single path per node
pair, will also assure a finite result. Unfortunately, as Example 5 already shows,
individual paths in such a finite result set can still have a practically unbounded
length. To address these issues, we choose to return a single as-short-as-possible
path for each node-pair (m,n):

Definition 1. Let q be a path query specified by language L and let G be a
graph. The evaluation of q on G using the single-path semantics, denoted by
single(q|G), yields, for every (m,n) ∈ [[q]]G, a single shortest path mπn in G such
that trace(π) ∈ L. (Hence, for every other path mπ′n in G with trace(π′) ∈ L,
we have |π| ≤ |π′|).

Toward evaluating context-free path queries using the single-path semantics,
we proceed in three steps. First, in Section 3.1, we show that all paths of interest of
a context-free path query can be represented by a grammar. Then, in Section 3.2,
we propose MinimizeSet, an algorithm for computing a shortest string in a
context-free language. Finally, in Section 3.3, we combine these results and show
how to evaluating context-free path queries using the single-path semantics.
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3.1 Representing the paths of interest of a path query

Let G = (V, Σ, δ) be a graph and (m,n) ∈ V a pair of nodes. There is a close
correspondence between labeled graphs and finite automata and we can easily
interpret (G,m, n) as a finite automata with initial state m and final state n. The
language of this finite automata is L(G;m,n) = {trace(π) | mπn is a path in G}.
It is well-known that the intersection of a finite automaton and a grammar can
be represented by another context-free grammar:

Lemma 1 (Bar-Hillel et al. [4]). Let C = (N , Σ,P) be a grammar, let
G = (V, Σ, δ) be a graph, let a ∈ N , and let m,n ∈ V. The language L(C ;a) ∩
L(G;m,n) can be represented by a grammar.

Lemma 1 guarantees that there is a finite representation of the set of all
strings in L(C ;a) ∩ L(G;m,n), each such string representing the trace of a path
mπn in G with trace(π) ∈ L(C ;a). Unfortunately, there can be several paths
with the same trace, complicating the derivation of the underlying paths. To
improve on this, we show the existence of graph-annotated grammars that directly
represent the set of paths instead of their traces:

Definition 2. Let C = (N , Σ,P) be a grammar and let G = (V, Σ, δ) be a
graph. We denote triples (a,m, n) ∈ N × V2 by a|mn. An annotated grammar
over (C ,G) is a grammar C |G = (N|G, Σ,P|G) in which

1. N|G = {a|mn ∈ N × V2 | L(C ;a) ∩ L(G;m,n) 6= ∅};
2. P|G = PΣ ∪ PN with PΣ = {a|mn 7→ σ | (m,σ, n) ∈ δ ∧ (a 7→ σ) ∈ P} and

PN = {a|mn 7→ b|mo c|on | (a 7→ b c) ∈ P}.
The notation a|mn denotes a node-annotated non-terminal: any string produced
from rewriting this non-terminal is a trace of a path mπn. As rewriting a|mn
eventually leads to rewrite steps using production rules in PΣ , which represent
single edges in G, the path π can be derived by keeping track of these node-
annotations. Notice that |N |G| ≤ |N ||V|2, |PΣ | ≤ |P||δ|, and |PN | ≤ |P||V|3. We
illustrate these annotated grammars with an example:

Example 6. Let G be the graph visualized in Figure 1 and C the grammar of
Example 4. We construct the annotated grammar C |G = (N|G, Σ,P|G). For
brevity, we refer to each person by the first letter of their name. We have

N|G = {q|mn | m,n ∈ {A, B, C, D, E}} ∪ {q|Fn | n ∈ {A, B, C, D, E}}.

We have P|G = PΣ ∪ PN , in which PΣ represents all edges in G and PN
represents all ways in which paths in G can be combined. E.g., q|AB ∈ PΣ , as
(Alice, friendOf, Bob) is and edge in G, and (q|AB 7→ q|AD q|DB) ∈ PN , as there
is a friendOf-labeled path from Alice to Dan and another friendOf-labeled path
from Dan to Bob. To produce a path from Alice to Eve, we use C |G:

q|AliceEve →∗P|G {Rewrite q|AliceEve 7→ q|AliceCarol q|CarolEve}
q|AliceCarol q|CarolEve →∗P|G {Rewrite q|CarolEve 7→ q|CarolDan q|DanEve}

q|AliceCarol q|CarolDan q|DanEve →∗P|G {Rewrite q|AliceCarol 7→ friendOf, . . . }
friendOf ◦ friendOf ◦ friendOf.
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The annotation in each node-annotated non-terminal carry information that can
be used to map strings in C |G to paths in the underlying graph G. E.g., in this
rewrite, we derived a path from Alice to Eve in graph G of length three, namely
the path “Alice friendOf Carol friendOf Dan friendOf Eve”.

Using induction, we can prove that graph-annotated grammars can always be
used as illustrated in Example 6:

Proposition 1. Let C = (N , Σ,P) be a grammar, let G = (V, Σ, δ) be a graph,
let C |G = (N|G, Σ,P|G) be the annotated grammar over (C ,G), let mπn be a
path in G, and let a ∈ N be a non-terminal. We have trace(π) ∈ L(C ;a) if and
only if we can derive π from a|mn ∈ N|G.

We note that annotated grammars can, on their own, be used in interactive
data exploration tools in which users can explorer the query results by zooming
in on certain paths in the dataset, e.g., for graph analysis and query debugging.

3.2 Deriving shortest strings of a grammar

Next, we propose an efficient way to compute a shortest string in the language
defined by a grammar. Mclean et al. [27] already proved that a shortest string can
be computed effective given a grammar, but did not provide a practical algorithm
for computing shortest strings. Toward such an algorithm, we introduce rewrites
using simple production rules:

Definition 3. Let P be a set of production rules. We define heads(P) = {a |
(a 7→ s) ∈ P} and we define the set of non-terminals derivable from a using the
production rules in P by 〈a〉P = {b ∈ N | ∃s1∃s2 a→+

P s1 ◦ b ◦ s2}.
A set of production rules P is non-recursive if, for every a ∈ heads(P),

we have a /∈ 〈a〉P . A set of production rules P is deterministic if, for every
a ∈ heads(P), there exists exactly one production rule (a 7→ s) ∈ P. Finally, a
set of production rules P is effective if a ∈ heads(P) implies that there exists a
string s ∈ Σ∗ such that a →∗P s. We refer to a set of production rules that is
non-recursive, deterministic, and effective as simple.

A simple set of production rules P over alphabet Σ can be used to rewrite
every non-terminal a ∈ heads(P) into a unique string ustringP(a) over Σ in a
straightforward manner, as P does not provide any choices during such a rewrite.

Example 7. Consider Example 6. For brevity, we restrict ourselves to Alice, Carol,
Dan, and Eve. With respect to these four people, the following set of production
rules in the annotated grammar is deterministic non-recursive:

q|AC 7→ friendOf, q|CA 7→ friendOf, q|CD 7→ friendOf, q|DE 7→ friendOf,

q|AD 7→ q|AC q|CD, q|AE 7→ q|AD q|DE, q|CE 7→ q|CA q|AE.

We can use simple production rules derived from a grammar to represent
shortest strings in that grammar:
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Lemma 2. Let C = (N , Σ,P) be a grammar. There exists a simple set of
production rules P ′ ⊆ P such that, for every non-terminal a ∈ N with L(C ;a) 6=
∅, ustringP′(a) is a shortest string in L(C ;a).

We say that a set of production rules that satisfies the conditions of Lemma 2 is
minimizing. Unfortunately, not every simple set of production rules is minimizing:

Example 8. Consider Example 7. The provided simple set of production rules P ′
is not minimizing: we have |ustringP′(q|CE)| = 4, while a shorter string of length
two exists. By replacing the production rule for q|CE in P ′ by q|CE 7→ q|CD q|DE,
we obtain a minimizing set of production rules.

Using a minimizing set of production rules, it is straightforward to produce
shortest strings for a ∈ heads(P). Moreover, the way to obtain these shortest
strings, by rewriting a, also provides complete information on how these short-
est strings can be obtained from the original grammar. Next, we propose the
MinimizeSet algorithm to construct a minimizing set of production rules. The
pseudo-code of this algorithm can be found in Figure 2, left.

The MinimizeSet algorithm works rather intuitively. Let C = (N , Σ,P) be a
grammar. Production rules of the form (a→ σ) ∈ P , σ ∈ Σ, produce the shortest
possible strings: if (a→ σ) ∈ P, then σ is a shortest string in L(C ;a). If such
productions rules exist for a, then we choose one of them for the minimizing set
of production rules (Line 3). Next, we process non-terminals a for which we have
determined the length cost(a) of the shortest strings in L(C ;a). We do so on
increasing string length by using a min-priority queue new (Line 7). We process a
by checking, for each production rule (c 7→ a b) ∈ P or (c 7→ b a) ∈ P , whether
using this production rule will allow us to rewrite c into a shorter string than
the currently-found string with length cost [c] (Line 10 and Line 12). We do so
by rewriting—in this production rule—a to a string of length cost(a) (Line 14).

Theorem 1. Let C = (N , Σ,P) be grammar. Execution of MinimizeSet(C )
yields a minimizing set of production rules P ′ for C in O(|N |(|N | log|N |+ |P|)).
Using P ′, a set R of shortest strings sa in L(C ;a), a ∈ N , can be constructed in
O(L), in which L =

∑
{|sa| | sa ∈ R} is the total length of these shortest strings.

Proof (sketch). The main while-loop maintains the following invariants:

1. The set {P ′[a] | a ∈ P ′} is simple.
2. If a ∈ P ′ and P ′[a] = (a 7→ b c), then cost [a] ≥ cost [b] + cost [c], cost [a] >

cost [b], and cost [a] > cost [c].
3. If a ∈ P ′ and s is a shortest string in L(C ;a), then |s| ≤ cost [a].
4. Let m be the priority of the last element removed from new . No new element

is inserted in new with priority less than or equal to m.
5. Let m be the priority of the last element removed from new . For every a ∈ N

and every shortest string s in L(C ;a) with |s| ≤ m, we have cost [a] = |s|.

As each non-terminal is added to new at most once, the MinimizeSet algorithm
terminates. At termination, Invariants 1–5 guarantee that the resulting set of
production rules is minimizing.
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Algorithm MinimizeSet(C = (N , Σ,P)):

1: P′, cost := empty mapping, empty mapping.
2: new is a min-priority queue.
3: for all (a 7→ σ) ∈ P do
4: if a /∈ cost then
5: cost[a],P′[a] := 1, (a 7→ σ).
6: add a to new with priority 1.
7: while new 6= ∅ do
8: Take a with minimum priority in new .
9: Remove A from new .

10: for all (c 7→ a b) ∈ P with b ∈ cost do
11: produce(c 7→ a b).
12: for all (c 7→ b a) ∈ P with b ∈ cost do
13: produce(c 7→ b a).
14: return {P′[a] | a ∈ P′}.

Procedure produce(d 7→ e f):
15: if d /∈ cost then
16: cost[d] := cost[e] + cost[f].
17: P′[d] := d 7→ e f.
18: Add d to new with priority cost[e] + cost[f].
19: else if cost[d] > cost[e] + cost[f] then
20: cost[d] := cost[e] + cost[f].
21: P′[d] := d 7→ e f.
22: Lower priority of d ∈ new to cost[e] + cost[f].

Algorithm MinimizeSetGG(C , G):

1: P′, cost := empty mapping, empty mapping.
2: new is a min-priority queue.
3: for all (a 7→ σ) ∈ P and (m,σ, n) ∈ δ do
4: if a|mn /∈ cost then
5: cost[a|mn],P′[a|mn] := 1, (a|mn 7→ σ).
6: Add a|mn to new with priority 1.
7: while new 6= ∅ do
8: Take a|mn with minimum priority in new .
9: Remove A|mn from new .

10: for all (c 7→ a b) ∈ P with b|no ∈ cost do
11: produceGG(c|mo 7→ a|mn b|no).
12: for all (c 7→ b a) ∈ P with b|om ∈ cost do
13: produceGG(c|on 7→ b|om a|mn).
14: return {P′[a|mn] | a|mn ∈ P′}.

Procedure produceGG(d|uw 7→ e|uv f|vw):
15: if d|uw /∈ cost then
16: cost[d|uw] := cost[e|uv ] + cost[f|vw].
17: P′[d|uw] := d|uw 7→ e|uv f|vw.
18: Add d|uw to new with priority cost[e|uv ] + cost[f|vw].
19: else if cost[d|uw] > cost[e|uv ] + cost[f|vw] then
20: cost[d|uw] := cost[e|uv ] + cost[f|vw].
21: P′[d|uw] := d|uw 7→ e|uv f|vw

22: Lower priority of d|uw ∈ new to cost[e|uv ] + cost[f|vw].

Fig. 2. On the left, the MinimizeSet algorithm that constructs a minimizing set of
production rules for the grammar C . On the right, the MinimizeSetGG algorithm that
constructs a minimizing set of production rules for the annotated grammar C |G, of
which only the necessary parts are implicitly constructed.

To obtain the stated complexity, we represent costs as an array holding |N |
integers. The costs used in cost and new are integers in the range 1, . . . , 2|N |−1,
which we can represent using log(2|N |) = |N | bits. The initialization steps perform
O(|P|) steps. The while-loop will, in the worst case, visit every non-terminal once.
For each of these non-terminals, one insertion into and one removal from the
priority queue new is performed. The inner for -loops will visit every production
rule twice, causing at most 2|P| decrease key operations on priority queue new .
When using a Fibonacci heap for a priority queue holding at most e elements,
each insert and removal costs O(log e) and each decrease key operation costs an
amortized O(1) heap operations [16]. Hence, a total of O(|N | log|N |+ |P|) heap
operations are performed. Taking the size of the integers representing priorities
into account, the heap operations cost O(|N |(|N | log|N |+ |P|)).

3.3 Deriving shortest paths for path query results

Using the above results, we can already answer context-free path queries under
the single-path semantics, this by applying MinimizeSet on an annotated
grammar. Unfortunately, this approach has high overhead due to the explicit
construction and storing of the annotated grammar. Luckily, during the execution
of MinimizeSet, the relevant parts of C |G can be implicitly derived from C
and G. We obtain the MinimizeSetGG algorithm by integrate these implicit
derivation steps into MinimizeSet. The resulting pseudo-code can be found in
Figure 2, right. We conclude:
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Fig. 4. On the left, the double-cyclic graph: two cycles, one having w − 1 edges labeled
with σ1, and one having w edges labeled with σ2. The two cycles are connected via a
shared node c. On the right, the cyclic graph having w nodes labeled with σ.

Theorem 2. Let C = (N , Σ,P) be a grammar, G = (V, Σ, δ) be a graph, and
a ∈ N a context-free path query. We can evaluate single(a|G) using Mini-
mizeSetGG in O(|N ||V|2(|N ||V|2 log(|N ||V|2) + |P|(|V|3 + |δ|)) + L), in which
L =

∑
{|π| | π ∈ single(q|G)} is total length of the shortest paths in the result.

4 Empirical Evaluation

To show that the path-based semantics for context-free path are viable in practice,
we implemented the MinimizeSetGG algorithm of Figure 2, right, and the
straightforward path derivation algorithm in C++14. Open-source code of the full
C++14 implementation of the data structures, algorithms, and supporting tooling
used can be found at https://www.jhellings.nl/projects/cfpqpaths/. Using this
implementation, we ran three different experiments to study the behavior of
the MinimizeSetGG algorithm. The programs were compiled and run on a
workstation with an Intel Core i5-4670 CPU, running at a maximum of 3.8 GHz,
and with 16 GiB of main memory. In each of our experiments, we test with
synthetic graphs that are designed specifically to test extreme-case behavior of
the algorithms. Visualizations of these graphs can be found in Figure 4.

Cost of the single-path semantics. As the first experiment, we study the cost
of evaluating context-free path queries using the single-path semantics. To put
MinimizeSetGG to the test, we run these experiments with the grammar

q 7→ a q′, q′ 7→ q b, q 7→ a b, a 7→ σ1, b 7→ σ2,

https://www.jhellings.nl/projects/cfpqpaths/
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which is context-free and cannot be expressed by a regular language. We use
the double-cyclic graphs of Figure 4, as this combination of query and graphs
produces very large path. More specifically, we have proven that, in this case,
the longest shortest paths have a size that is quadratic in the size of the graph,
whereas for all single-symbol grammars and regular grammars the maximum size
is only linear in the size of the graph (details omitted due to space limitations).
The results of the experiment can be found in Figure 3(a). As is clear from the
results, single-path evaluation is practically feasible: the query q, evaluated on
a double-cyclic graph of 4750 nodes, yields a set of 11 · 106 distinct paths, of
which the longest (non-simple) path has 11 · 106 edges, and the average path has
5.6 ·106 edges. Hence, the query result is large. Still, MinimizeSetGG finished in
only 4.3 s and the longest path was constructed in 1.5 s. Hence, even for queries
and graphs that produce very large results, the query costs are reasonable.

Grammars: bounded vs. unbounded. In the second experiment, we take a more
in-depth look of the cost of context-free path query evaluation. In practice, many
path queries are bounded in the sense that only paths of a limited length are
inspected in the graph. E.g., to ask for friends-of-friends in a social network,
one only has to inspect paths of length two. Some path queries, however, are
unbounded, as context-free path queries can use recursion. This is of use, e.g., to
query for pairs of indirect friends (Example 1). As unbounded queries can yield
much larger result sets than bounded queries, we inspect the impact of the type
of queries on the running time of MinimizeSetGG. For this experiment, we use
the queries p1 (bounded) and p2 (unbounded):

p1 7→ s b b 7→ s s s 7→ σ;

p2 7→ s p2 p2 7→ σ s 7→ σ.

The language described by p1 is L1 = {σσσ}, and the language described by
p2 is L2 = {σk | k ≥ 1}. We use the cycle graphs with w nodes of Figure 4, on
which query p1 will evaluate to a very sparse result set of w paths, whereas query
p2 will evaluate to a very dense result set of w2 paths. We measured the running
time of MinimizeSetGG for both queries. The results of the experiment can be
found in Figure 3(b). As is clear from the results, the performance of single-path
evaluation depends largely on the size of the query result. On the one hand,
query evaluation for p1, a bounded query yielding a small result set, finished
within a second on all graphs. On the other hand, query evaluation for p2, an
unbounded query yielding large result sets, produced a result set 22 ·106 paths on
the larges graph and did so in 22 s. We notice that the size of the result set is the
limiting factor here: in the previous experiment, we already demonstrated that
MinimizeSetGG can easily deal with very large paths constructed by complex
context-free path queries.

Grammars: unambiguous vs. ambiguous. In the third and final experiment, we
look at the impact of the design of context-free path queries on the cost of
their evaluation. This experiment is inspired by well-known results from parsing
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and compiler construction (see, e.g., [17]): for grammars that are deterministic
and unambiguous, e.g., LL(k) or LR(k) grammars, simple high-performance
parsers with a linear running time exist. For non-deterministic and for ambiguous
grammars, such high-performance parsers do not exist, however. The Minimize-
SetGG algorithm we propose works on all grammars, even grammars that are
non-deterministic and ambiguous. This raises the question whether the type of
grammars impacts the overall performance. To answer this question, we construct
two equivalent queries q1 (unambiguous) and q2 (ambiguous):

q1 7→ s q1 q1 7→ σ s 7→ σ;

q2 7→ q2 q2 q2 7→ σ.

Both queries specify the language L = {σk | k ≥ 1}. As in the previous experiment,
we use cycle graphs. On these cycle graphs, both queries will evaluate to very
dense results sets. We measured the running time of MinimizeSetGG for both
queries. The results of the experiment can be found in Figure 3(c). As is clear
from the results, evaluation of the unambiguous query q1 is magnitudes faster
than evaluation of the ambiguous query q2, even though MinimizeSetGG does
not yet optimize for deterministic or unambiguous grammars. The reason for this
is simple: for any shortest path in the graph, q2 has many different ways to derive
the trace of this path, whereas q1 only has a single derivation. Consequently,
MinimizeSetGG will have to inspect many more choices while evaluating q2.
Still, we believe that further optimizations for deterministic and unambiguous
grammars are possible, a direction we leave open for future work.

5 Related Work

There is an abundant literature on graph queries, formal languages, and context-
free grammars. There is only limited work toward answering graph queries with
paths, however. Likewise, there is only limited work on the related problem of
deriving shortest strings from grammars. Next, we give a brief overview.

As stated before, path-based semantics have only gained limited attention.
For the regular expressions, Barceló et al. [6] introduced the extended regular
path queries that have path variables for output. The main focus of Barceló
et al. is, however, on the use of path variables for expressivity purposes, and
path-based results are only studied in limited details. Recent work by Hofman et
al. [21] provides an alternative to use path-based query semantics for debugging:
to gain more insight in the behavior of regular path queries with respect to
the expected behavior, Hofman et al. propose a technique based on separability.
Although this approach addresses query debugging, it does not lift the other
limitations of the traditional query semantics used to evaluate path queries. In
practical graph database systems, path-based results can already be used in
some limited settings [2]. E.g., SPARQL can return RDF graphs via CONSTRUCT

queries [19], which can be used to encode fixed-size paths; whereas Gremlin can
enumerate graph traversal steps (which can encode paths) via the .path() step,
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which comes at prohibitive high costs [29]. In the setting of model checking using
CTL [12], path-based query semantics are widely used to produce witnesses and
counterexamples that show why the graph does or does not meet the conditions
expressed by the CTL formulae. Unfortunately, model checking languages lack
the expressive power found in most path query languages used to query graph
databases. This sharply contrasts our work, as we show that path-based results
are viable both in theory and in practice, this even for complex context-free path
queries. Hence, to the best of our knowledge, our work is the first to systematically
formalize and study path results for complex graph query languages.

Barrett et al. [7] studies variations of the single-path semantics we propose
in this work. They do so from a complexity-theoretical standpoint, however, by
classifying the complexity of query evaluation using variations of our single-path
semantics. E.g., they show that the single-path semantics is feasible for regular
path queries and context-free path queries, but becomes unfeasible when only
simple paths are to be returned. As their focus is on classifying the complexity
of evaluation, Barret et al. do not provide practical algorithms for the evaluation
of path queries using the single-path semantics. We improve on this work by
providing the algorithm MinimizeSetGG, an efficient algorithm for evaluating
context-free path queries on graphs using the single-path semantics.

Finally, we have shown that the evaluation of context-free path queries on
graphs using the single-path semantics can be reduced to the derivation of a
shortest string from a grammar. Mclean et al. [27] proved that such a shortest
string could be computed effective given a grammar, but failed to give a practical
algorithm for doing so. We improve on these results by providing the algorithm
MinimizeSet, an efficient algorithm for computing the shortest string in a
grammar. Other works, e.g. [13,15,14,26], provide ways to enumerate strings in
a grammar, but these algorithms cannot effectively be used to quickly find the
shortest such string.

6 Conclusions and Future Work

To address the limitations of the traditional semantics for evaluating path queries,
such as the regular path queries and the context-free path queries, we proposed
the single-path semantics. This path-based semantics is not only useful for end-
users, but also enables new directions in the design of graph query languages
and enables new tools for graph analytics, data exploration, data provenance,
and debugging of complex path queries. To show the practical viability of the
single-path semantics, we also propose algorithms that evaluate context-free path
queries using the single-path semantics. Our initial results are promising: our
experimental evaluation shows that queries can be evaluated using the single-path
semantics with little effort, even in cases where the path-based query results are
very large. Based on our initial results, we see several avenues for the further
study of evaluating queries with path-based semantics:

1. The algorithms in our paper are bottom-up and are tuned toward evaluating
a query over the entire graph. In many practical applications, the end-user is
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only interested in a part of the graph, e.g., paths that originate or end at a
certain node. For such applications, we are interested in the development of
top-down and goal-oriented algorithms.

2. Our measurements showed that the cost of evaluating a context-free path
query depends heavily on the structure of the grammar used by the query:
evaluating different grammars that express the same query can have widely
different costs. This raises an interesting query optimization question: can
we automatically optimize grammars to reduce the cost of evaluation?

3. Furthermore, it is open whether simpler, more efficient, query evaluation
algorithms exist for restricted classes of context-free grammars (e.g., deter-
ministic grammars or unambiguous grammars [17]). It is not directly clear
if such algorithms exist: deterministic and unambiguous grammars will still
face ambiguity and non-deterministic choices in their evaluation on graphs,
as complex graphs can have many paths with the same traces.
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