
An In-Depth Look of BFT Consensus in
Blockchain: Challenges and Opportunities

Suyash Gupta Sajjad RahnamaJelle Hellings Mohammad Sadoghi

MokaBlox LLC
Exploratory Systems Lab

University of California Davis

• A linked list of blocks.

• Each block contains hash of the previous block.

• A block contains information about some client transactions.

What is Blockchain?

Data

Previous
Hash

Data

Genesis

Data

Previous
Hash

Previous
Hash

Client Transactions

New
Block

2

• By User:Pedant, User:Wapcaplet, User:Antonu, User:Vanderlindenma, User:.js. - Composition of File:Barnstar of Diligence Hires.png + File:Voting hand.svg., CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=45960536

• https://blog.devolutions.net/2017/10/whats-the-difference-between-2fa-and-mfa

Why Blockchain?

Democracy
Decentralization
Authentication

Security

3

https://commons.wikimedia.org/w/index.php%3Fcurid=45960536

Components of a Blockchain System

• Replicas à Store all the data.

• Client à Sends transactions to process.

• Consensus Protocol à Helps ordering transactions.

• Cryptographic Constructs à Authenticate replicas and clients.

• Ledger à Records transactions.

• https://medium.com/@blake_hall
4

Consensus

Primary

Malicious

Crashed
Client

5

Types of Blockchain Systems
• Permissionless à Open Access

• Anyone can participate.

• Identities of the replicas are unknown.

• Applications include crypto-currency and money exchange.

• Permissioned à Restricted Access

• Only a select group of replicas, although untrusted can participate.

• Identities of the replica are known a priori.

• Applications include health-care and energy trading.

6

BITCOIN

• First Crypto-currency à a monetary application.

• Uses Nakamoto consensus à Proof-of-Work beneath the skin.

• Supports permissionless access.

• Requires solving hard cryptographic puzzles.

• Any replica that wants to create a new block proves that it did solve the puzzle.

• Difficulty of the puzzle helps prevent malicious attacks.

• By Ma.prezentalok - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68898918
7

ETHEREUM

• Another Crypto-currency à a token used in variety of applications.

• Uses Proof-of-Work but plans to start using Proof-of-Stake.

• Supports permissionless access.

• Allows programmers to design their transactions or “smart contracts”.

• Hard dependency on Ethereum Virtual machine (EVM).

• Envisions design of Permissioned applications.

• By Ethereum Foundation - https://camo.githubusercontent.com/1b3d0063d6a8bcd56ca07b0ea2ef0f71b17a0fa8/687474703a2f2f737667706f726e2e636f6d2f6c6f676f732f657468657265756d2e737667, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=52278619

8

9

Permissioned Blockchain Systems

• Require identities of the participating replicas to be known a priori.

• Replicas still untrusted à Consensus through traditional BFT protocols.

• Computationally in-expensive.

• More reliance on communication primitives.

• Prevent chain forks.

• Suitable for needs of an industry à JP Morgan, IBM, Oracle

• Advent path for Blockchain Databases.

10

Transactions, Agreement and Consensus

11

The Omniscient Transaction

• A transformation from a consistent state to another consistent state.

• A contract between two or more parties.

• A collection of Read or Write operations.

• Types of transactions: nested, compensating, multi-operation etc.

12

ACID Properties

• Atomicity: A transaction either completes fully or none of its changes take place.

• Consistency: The transaction must obey legal protocols

• Isolation: The intermediate state of a transaction is invisible to other transactions

• Durability: Once a transaction is committed, it cannot be abrogated

D C

I

A

13

Consistency vs Availability

• An ongoing struggle that causes performance tradeoffs.

• Availability à Database needs to be always available for use.

• Solution? Replication

• Issues? Faults, Failures and Attacks.

• Consistency à Database needs to be correct.

• Solution? All replicas should have same state.

• Issues? Expensive.

• By Ryan Child - http://www.navy.mil/view_image.asp?id=24509, Public Domain, https://commons.wikimedia.org/w/index.php?curid=182472
14

A Deep Dive into BFT Consensus

PBFT: Practical Byzantine Fault Tolerance

• First practical Byzantine Fault Tolerant Protocol.

• Tolerates up to f failure out of 3f+1 replicas

• Three phases of which two require quadratic communication complexity.

• Safety is always guaranteed and Liveness is guaranteed in periods of partial synchrony.

• View-Change protocol for replacing malicious primary

16

PBFT Failure-Free Flow

Client

Replica 1

Replica 2

Byzantine
Replica

Primary

T

Pre-Prepare
O(n)

Prepare
O(n2)

Commit
O(n2)

ReplyClient
Request

17

PBFT Primary Failure (View Change)

Replica 1

Replica 2

Byzantine Primary

New Primary

View Change
Message

View Change
Acks

New View
Message

Enter
New View

18

Requirements of Existing BFT Protocols

1) Require three phases of communication, of which two necessitate quadratic

communication (PBFT).

2) Expect no failures or dependence on clients (Zyzzyva).

3) Incur high client latencies due to many phases of communication (PBFT, HotStuff).

4) Require threshold signatures, which are computationally expensive (HotStuff).

5) Require more than 3f+1 replicas (Q/U, HQ).

6) Need trusted components (AHL, Attested Append-only memory).

19

Proof-of-Execution (PoE):
Reaching Consensus through Fault-Tolerant Speculation

• Speculative Execution to reduce the client latency.

• Out-of-Order message processing for transactions.

• Three Linear Phases.

• No Dependence on Clients or requirement of expensive cryptographic primitives.

• No Requirement of a Twin-Path protocol.

20

PoE vs Other Protocols

21

PoE Failure-Free Flow

Client

Replica 1

Replica 2

Byzantine
Replica

Primary

T

Pre-Prepare Prepare Certify ReplyClient
Request

22

PoE View Change Protocol

Replica 1

Replica 2

Byzantine Primary

New Primary

View Change Request Join after Receiving
f+1 VC request

New View
Propose

Enter
New View

23

PoE Scalability under Single Failure

24

Scaling Blockchain Databases through Parallel Resilient
Consensus Paradigm

• Why should BFT protocols rely on just one primary replica?

• Malicious primary can throttle the system throughput.

• Malicious primary requires replacement à fall in throughput.

25

Multiple Byzantine Fault-Tolerance
(MultiBFT) Paradigm

• Designate multiple replicas as Primaries!

• Run multiple parallel consensuses on each replica.

Client

Replica

Byzantine
Replica

Primary
Replica

T

Pre-Prepare Prepare Commit ReplyRequest

T
1

2

1

2

1

2

1

2

Client

Primary
Replica

MultiBFT with 2 parallel instances on each replica 27

Malicious Primaries Collusion

• Multiple malicious primaries can prevent liveness!

• Solution à Optimistic Recovery through State Exchange.

Goo
d R

epl
ica

s

|A| =
 f

Good Replicas

|B| = f

Good Replica
|C| = 1

Other f-2
Malicious Replicas

P1 P2|M| = f

Op1
Op2

28

MultiBFT Scalability

29

Global Scale Resilient Blockchain Fabric*

• Traditional BFT protocols do not scale to geographically large distances.

• Blockchain requires decentralization à replicas can be far apart à expensive

communication!

• The underlying BFT consensus protocol should be topology-aware.

30
*Proceedings of the 46th VLDB Endowment (VLDB’20).

Vision Geo-Scale Byzantine Fault-Tolerance

31

Each cluster runs PBFT to
select, locally replicate, and

certify a client request.

Primary at each cluster
shares the certified client

request with other clusters.

GeoBFT Protocol

Local Replication Inter-cluster Sharing Ordering and Execution
Order the certified
requests, execute them,
and inform local clients.

GeoBFT is a topology-aware protocol, which groups replicas into clusters. Each

cluster runs the PBFT consensus protocol, in parallel and independently.

32

Client

R2,1

R2,2

R2,3

PC2

ReplyLocal Request Local Replication

Client

R1,1

R1,2

R1,3

PC1

Global
Sharing

Local
Sharing

Cluster 1
C1

Cluster 2
C2

33

Local PBFT
Consensus on T1

Local PBFT
Consensus on T1

GeoBFT Takeaways

• To ensure common ordering à linear communication among the clusters is

required.

• Primary replica at each cluster sends a secure certificate to f+1 replicas of every

other cluster.

• Certificates guarantee common order for execution.

• If primary sends invalid certificates à will be detected as malicious.

34

GeoBFT Scalability

35

ResilientDB: High Throughput Yielding,
Scalable Permissioned Blockchain Fabric

Visit at: https://resilientdb.com/

*Proceedings of the 40th IEEE ICDCS 2020.

https://resilientdb.com/

Why Should You Chose ResilientDB?

1) Bitcoin and Ethereum offer low throughputs of 10 txns/s.

2) Existing Permissioned Blockchain Databases still have low

throughputs (20K txns/s).

3) Prior works blame BFT consensus as expensive.

4) System Design is mostly overlooked.

5) ResilientDB adopts well-researched database and system practices.

37

Dissecting Existing Permissioned Blockchains

1) Single-threaded Monolithic Design

2) Successive Phases of Consensus

3) Integrated Ordering and Execution

4) Strict Ordering

5) Off-Chain Memory Management

6) Expensive Cryptographic Practices

38

Can a well-crafted system based on a classical BFT
protocol outperform a modern protocol?

39

ResilientDB Architecture

HASHING
TOOLKIT

SIGNING
TOOLKIT

SECURE
LAYER

STORAGE LAYER

BLOCKCHAIN
METADATA

THREADS

BFT CONSENSUS

QUEUES

EXECUTION LAYER

NET WORK

ResilientDB Multi-Threaded Deep Pipeline

4141

Client
Requests

Prepare
& Commit

Input

Network

Message from
Clients and Replicas

Batch Creation

Worker

Checkpoint

Execute

Message to
Replicas and Clients

Output

Network

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

42

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

43

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

44

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

45

Insight 2: Optimal Batching Gains

More transactions batched together à increase in throughput
àreduced phases of consensus.

46

Insight 3: Memory Storage Gains

In-memory blockchain storage à reduces access cost.

47

Insight 4: Number of Clients

Too many clients à increases average latency.

48

ResilientDB: Hands On
Visit at: https://github.com/resilientdb/resilientdb

https://github.com/resilientdb/resilientdb

How to Run ResilientDB?

• Go to https://github.com/resilientdb/resilientdb and Fork it!

• Install Docker-CE and Docker-Compose (Links on git)

• Use the Script ”resilientDB-docker” as following:

./resilientDB-docker --clients=1 --replicas=4

./resilientDB-docker -d [default 4 replicas and 1 client]

• Result will be printed on STDOUT and stored in res.out file.

50

https://github.com/resilientdb/resilientdb

How to Run ResilientDB?

51

Docker CE

What is Docker?

• Run a distributed program on one machine

• Simulate with lightweight virtual machines

52

Docker CE

What is Docker?

• Run a distributed program on one machine

• Simulate with lightweight virtual machines

53

Resilient DB

./resilientDB-docker -d

• Remove old Containers

• Create new Containers

• Create IP address settings

• Install dependencies

• Compile Code

• Run binary files

• Gather the results

54

Resilient DB

• Throughput

• Transaction per second

• Average Latency

• The from client request to client reply

• Working Thread idleness

• The time that thread is waiting

• WT0: Consensus Messages

• WT1 and WT2: Batch Threads

• WT3: checkpointing Thread

• WT4: Execute Theread

55

PBFT: Practical Byzantine Fault Tolerance
Client Request

• Client/client_main.cpp

• System/client_thread.cpp

• ClientQueryBatch Class

• Process ClientBatch in primary

57

PBFT: Practical Byzantine Fault Tolerance
Process Messages

• Transport/message.cpp

• System/worker_thread.cpp

• System/worker_thread_pbft.cpp

• Worker Thread: Run function

• Worker Thread: Process function

58

PBFT: Practical Byzantine Fault Tolerance
Process Client Message

• System/worker_thread_pbft.cpp

• process_client_batch Function

• Create and Send Batch Request

• create_and_send_batchreq Function

• Create Transactions

• Create Digest

• BatchRequest Class

• Pre-Prepare Message

59

PBFT: Practical Byzantine Fault Tolerance
Process Batch Request (Prepare)

• System/worker_thread_pbft.cpp

• process_batch Function

• Create and Send Prepare Message

• Create Transactions

• Save Digest

• PBFTPrepare Class

• Prepare Message

60

PBFT: Practical Byzantine Fault Tolerance
Process Prepare and Commit Messages(Prepare)

• System/worker_thread_pbft.cpp

• process_pbft_prepare Function

• Count Prepare Messages

• Create and Send commit Message

• PBFTCommit Message

• process_pbft_commit Function

• Count commit messages

• Create and Send execute Message

• ExecuteMessage Class

61

PBFT: Practical Byzantine Fault Tolerance
Process Execute Message

• System/worker_thread.cpp

• Internal Message

• process_execute Function

• Execute the Transactions in batch in order

• Create and send Client Response

• ClientResponse Class

62

PBFT: Practical Byzantine Fault Tolerance
Work Queue

• Lock Free queues

• All the messages are being stored in these queues

• System/work_queue.cpp

• Multiple queues for different Threads

• Dequeue and Enqueue Interfaces

• Enqueue in IOThread

• Dequeue in Worker Thread

63

PBFT: Practical Byzantine Fault Tolerance
IO Thread and Transport Layer

• Multiple Input Threads

• Multiple Output Threads

• System/io_thread.cpp

• Transport Layer: TCP Sockets

• Nano Message Library

• Transport/transport.cpp

64

Configuration Parameters to Play

• NODE_CNT Total number of replicas, minimum 4, that is, f=1.
• THREAD_CNT Total number of threads at primary (at least 5)
• CLIENT_NODE_CNT Total number of clients (at least 1).
• MAX_TXN_IN_FLIGHT Multiple of Batch Size
• DONE_TIMER Amount of time to run the system.
• BATCH_THREADS Number of threads at primary to batch client transactions.
• BATCH_SIZE Number of transactions in a batch (at least 10)
• TXN_PER_CHKPT Frequency at which garbage collection is done.
• USE_CRYPTO To switch on and off cryptographic signing of messages.
• CRYPTO_METHOD_ED25519 To use ED25519 based digital signatures.
• CRYPTO_METHOD_CMAC_AES To use CMAC + AES combination for authentication

65

Thank You

