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Introduction

» ARIES Logging: A traditional "heavy-weight" logging technique that involves recording old
and new updates to a tuple. Involves significant overhead in writing the log out to disk.

» Command Logging: A more recent approach that maintains only a pointer to the
transaction with input parameters giving a compact log size. Involves overhead in replaying
the entire transaction back from the log file.

»Adaptive Logging: The paper proposes a technique that uses a combination of

ARIES style and command logging giving 10x boost to recovery times and transaction
throughput comparable to Command logging.
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Logging Comparison

node 1 node 2

Data A B C D Data E F G H

time

|
|
|
|
|
|
|
|
|
\

flx,y):y=2x




LO

Table 1: ARIES log

ing Comparison (Contd

timestamp | transaction ID | parameter | old value | new value
100001 t, B v(B) 2v(A)
100002 t, G v(G) 2v(C)
100003 ts B v(B) 2v(D)
100004 t, D v(D) 2v(G)

Table 2: Command log

transaction ID | timestamp | stored procedure pointer | parameters
1 100001 P A,B
2 100002 p C,G
3 100003 p D,B
4 100004 p G,D




Problems with Command Loggin
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VoltDB Command Logging ImEIementation

@ Replay transactions sequentially
node 1 node 2




Distributed Command Logging

> Initiate recovery in parallel & replay necessary transactions.
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Dependency Graph for Recovery Set ( n,)
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Processing Group (Parallel Recover
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Transaction FootErint

checksum | LSN | record type | insert/update/delete | transaction id | partition 1d

|—> tablename | primary key | modified column list | before image | after image
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(b) Footprint Log
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Ada ptive Logging

» The key bottleneck of distributed command logging is caused by the dependencies
amongst the transactions.
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Adaptive Algorithm

Algorithm 6 Online (Transaction t;, int wusedQQuota)

1: int g =|getQuota(s(t;)} usedQuota

2: 1f g J then Bi/o
3- quota(k) = P(fail_time < k) T aries
4: b > 7 then

5: usedQUOta++ bz?Pt - (INRcmd Z P(as) — Ram’eS) ” 1 |
6: createAriesLog(%;) VageA Werses
7:  else

8:

createCommandLog(t;)




EerrimentaI Evaluation

> ARIES — ARIES logging.
» Command — command logging

» Dis-Command — distributed command logging
» Adapt-x — adaptive logging

All the experiments are conducted on an in-house cluster of 17\
nodes.

The head node is a powerful server equipped with an Intel(R)
Xeon(R) 2.2 GHz 24-core CPU and 64 GB RAM.

The compute nodes are blades, each with an Intel(R) Xeon(R)
1.8 GHz 4- core CPU and 8 GB RAM.

H-Store is deployed on a cluster of 16 compute nodes with the
@abase being partitioned evenly. /
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Recove ry
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Performance gDistributed Transactions)
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Conclusion

» For in-memory databases, command logging shows better performance than ARIES
logging.

» Command Logging significantly increases the recovery time due to sequential re-execution
of the transactions.

» Adaptive Logging aims to achieve an optimized trade off between the runtime performance
of transaction processing and the recovery performance upon failures.



