Adaptive Logging:

Optimizing Logging & Recovery Costs in Distributed In-memory Databases

Authors: Chang Yao, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, & Sai Wu
Presented By: Shreejit Nair

Introduction

» ARIES Logging: A traditional "heavy-weight" logging technique that involves recording old
and new updates to a tuple. Involves significant overhead in writing the log out to disk.

» Command Logging: A more recent approach that maintains only a pointer to the
transaction with input parameters giving a compact log size. Involves overhead in replaying
the entire transaction back from the log file.

»Adaptive Logging: The paper proposes a technique that uses a combination of

ARIES style and command logging giving 10x boost to recovery times and transaction
throughput comparable to Command logging.

2‘

Logging Comparison

node 1 node 2

Data A B C D Data E F G H

time

|
|
|
|
|
|
|
|
|
\

flx,y):y=2x

LO

Table 1: ARIES log

ing Comparison (Contd

timestamp | transaction ID | parameter | old value | new value
100001 t, B v(B) 2v(A)
100002 t, G v(G) 2v(C)
100003 ts B v(B) 2v(D)
100004 t, D v(D) 2v(G)

Table 2: Command log

transaction ID | timestamp | stored procedure pointer | parameters
1 100001 P A,B
2 100002 p C,G
3 100003 p D,B
4 100004 p G,D

Problems with Command Loggin

Data A B C Data E F G H

§.
(0]

«————————

VoltDB Command Logging ImEIementation

@ Replay transactions sequentially
node 1 node 2

Distributed Command Logging

> Initiate recovery in parallel & replay necessary transactions.

Transactions Nodes
() (n)
\ /|

t, .

f (ti) = Ny

Dependency Graph for Recovery Set (n,)

node 1 node 2

checkpoint
I

submission | commit
time time

txn stored procedure parameters

f1(p1): p1=p1+1
fZ(pllpZ): p1=p1'1; p2=p1+2

time ! ta={ty, ty, t;}

Ve RO RV NN B e

5 4 fs(py, P,): P1=2%p, X4s X5
6 5 fs(py, Py): P1=2%p, Xgr X1
| 7 6 fipy): p=p,+1 Xg

Processing Group (Parallel Recover

node 1 node 2
checkpoint

| — .

: txn subt'i"nf‘:'on cc;:\;rzlt stored procedure parameters

: 1 1 2 fi(p,): py=p,+1 X

time | 2 2 4 | fy(pyp,): P1=Ps-1, P,=p,+2 X1,X3
3 3 4 fi(py): P1=2%p, X,
4 4 5 fo(p,): py=log(p,) X3
5 4 5 fs(py, Po): P1=2%P, X4 Xs
6 5 6 fs(p., P,): P1=2%p, Xe» X1
7 6 7 fi(py): p=p,+1 Xg
\4 I

oy QOO © O

Transaction FootErint

checksum | LSN | record type | insert/update/delete | transaction id | partition 1d

|—> tablename | primary key | modified column list | before image | after image

(a) ARIES Log

checksum table ID | tuple ID |

Z table ID

(b) Footprint Log
@

Ada ptive Logging

» The key bottleneck of distributed command logging is caused by the dependencies
amongst the transactions.

time

ARIES Log

4__________

Adaptive Algorithm

Algorithm 6 Online (Transaction t;, int wusedQQuota)

1: int g =|getQuota(s(t;)} usedQuota

2: 1f g J then Bi/o
3- quota(k) = P(fail_time < k) T aries
4: b > 7 then

5: usedQUOta++ bz?Pt - (INRcmd Z P(as) — Ram’eS) ” 1 |
6: createAriesLog(%;) VageA Werses
7: else

8:

createCommandLog(t;)

EerrimentaI Evaluation

> ARIES — ARIES logging.
» Command — command logging

» Dis-Command — distributed command logging
» Adapt-x — adaptive logging

All the experiments are conducted on an in-house cluster of 17\
nodes.

The head node is a powerful server equipped with an Intel(R)
Xeon(R) 2.2 GHz 24-core CPU and 64 GB RAM.

The compute nodes are blades, each with an Intel(R) Xeon(R)
1.8 GHz 4- core CPU and 8 GB RAM.

H-Store is deployed on a cluster of 16 compute nodes with the
@abase being partitioned evenly. /

Through|:_>ut

30000
—E&— No logging
—#— Command D O U
»— ARIES —8—F8+8-4-%H
— —a— Adapt-100% =
Q25000 |- —+— Dis-Command il |
i
=
£ y
= 50000 \‘ Footprint Log
Q.
=
o !
=y
o
| —
L 15000 |-
|_
10000 — ' ' . . :

10 15 20 25 30 35 40
Client rate (K txn/sec)

(a) Throughput without distributed transactions . ’

Recove ry

ARIES Logging for all
distributed transactions.

Command Logging-single § . || I Command
node transaction Logging performs
worst

450

400 |- == Adapt-100%
1 Adapt-60%
350 - —— Adapt-40%
B Dis-Command
B Command

0% 5% 10% 15% 20% 25
Percentage of distributed transactions

(a) 1 minute after the last checkpoint

Performance gDistributed Transactions)

6000

ARIES
—#— Command
—+— Dis-Command _
—A— Adapt-100%

)

sSecC
o
S
S
S

txns/
géx

hput

3000

g

2000

1000

Overall throu

0 10 20 30 40 50
Failure interval (minutes)

(¢) Overall throughput with 20% distributed
transactions

Conclusion

» For in-memory databases, command logging shows better performance than ARIES
logging.

» Command Logging significantly increases the recovery time due to sequential re-execution
of the transactions.

» Adaptive Logging aims to achieve an optimized trade off between the runtime performance
of transaction processing and the recovery performance upon failures.

