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Motivation

● Concerned with: 

○ When does distributing concurrency control benefit performance?

○ When is distribution strictly worse for a given workload?

● Costs of distributed transaction processing are well known [Bernstein et. al 
‘87, Ozsu and Valduriez ‘11] 

○ But, in cloud environments providing high scalability and elasticity, trade-offs are less 
understood. 

● With new proposals of distributed concurrency control protocols, there is no 
comprehensive performance evaluation. 
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Note: Lock-based 
implementations may 
be different (e.g. 
deadlock 
detection/avoidance)
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Transaction Model

● Deneva uses the concept of stored procedures to model transactions. 

○ No client stalls in-between transaction logical steps

● Support for protocols (e.g. CALVIN) that require READ-SET and WRITE-SET 
to be known in-advanced 

○ DBMS needs to compute that. 

■ Simplest way: run transaction without any CC measures
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High Level System Architecture
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High Level System Architecture

Client and Server processes are deployed on different hosted cloud 
instance
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High Level System Architecture

Communication among processes uses nanomsg socket library
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● I/O threads responisble for handling 
marshaling and unmarshaling 
transactions, operations, and return 
values.

● Operations of active transactions are 
prioritized over new transactions from 
clients
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● Non-blocking execution of transactions
● When a transaction blocks, the thread 

does not block.
● The thread “saves the state of the 

active transaction” and accepts more 
work from the work queue. 
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● Local in-memory hashtable 
● No recovery
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Data structures that are specific to each 
protocol
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Distributed timestamp generation based 
lock system’s clock
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Transaction Protocols 

● Concurrency Control

○ Two-phase Locking (2PL)

■ NO_WAIT

■ WAIT_DIE

○ Timestamp Ordering (TIMESTAMP)

○ Multi-version concurrency control (MVCC)

○ Optimistic concurrency control (OCC)

○ Deterministic (CALVIN)

● Commitment Protocols

○ Two-phase Commit (2PC)
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Two-phase Locking (2PL)

● Two phase: 

○ Growing phase: lock acquisition (no lock release)

○ Shrink phase: lock release (no more acquisition)

● NO_WAIT

○ Aborts and restarts the transaction if lock is not available

○ No deadlocks (suffers from excessive aborts)

● WAIT_DIE

○ Utilizes timestamp

○ Older transactions wait, younger transactions abort

○ Locking in shared mode bypasses lock queue (which contains waiting writers)
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Timestamp Ordering (TIMESTAMP)

● Executes transactions based on the assigned timestamp order

● No bypassing of wait queue

● Avoids deadlocks by aborting older transactions when they conflict with 
transactions holding records exclusively
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Multi-version Concurrency Control (MVCC)

● Maintain multiple timestamped copies of each record

● Minimizes conflict between reads and writes

● Limit the number of copies stored

● Abort transactions that try to access records that have been garbage 
collected
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Optimistic Concurrency Control (OCC)

● Based on MaaT [Mahmoud et. al, MaaT protocol, VLDB’14]

● Strong-coupling with 2PC:

○ CC’s Validation == 2PC’s Prepare phase

● Maintains time ranges for each transaction

● Validation by constraining the time range of the transaction

○ If time range is valid => COMMIT

○ Otherwise => ABORT
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Deterministic (CALVIN)

● Discussed in previous class

● Key idea: impose a deterministic order on a batch of transactions

● Avoids 2PC

● Unlike others, requires READ_SET and WRITE_SET of transactions to be 
known a priori, otherwise needs to be computed before starting the execution 
of the transaction

● In Deneva, a dedicated thread is used for each of sequencer and scheduler. 
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Evaluation “Hardware”

● Amazon EC2 instances (m4.2xlarge)
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Evaluation Methodology 

● Table partitions are loaded on each server before each experiment

● Number of open client connections: 10K

● 60 seconds warmup 

● 60 seconds measurements

● Throughput measure as the number of successfully completed

● Restart an aborted transaction (due to CC) after a penalization period
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Evaluation Workload

● YCSB
● TPC-C: warehouse order processing system
● Product-Part-Supplier
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Evaluation Workload

● YCSB
○ Single table with 1 primary key and 10 columns of 100B each

■ ~ 16 million records per partition => 16GB per node
○ Each transaction accesses 10 records with independent read and write operation in random 

order
○ Zipfian distribution of access with theta in [0,0.9]

● TPC-C: warehouse order processing system
● Product-Part-Supplier

29



Evaluation Workload

● YCSB
● TPC-C: warehouse order processing system

○ 9 tables partitioned by warehouse_id
○ Item table is read-only and replicated at every server
○ Implemented two transaction of TPCC specs (88% of workload)

■ Payment: 15% chance to access a different partition
■ NewOrder: ~10% are multi-partition transactions

● Product-Part-Supplier
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Evaluation Workload

● YCSB
● TPC-C: warehouse order processing system
● Product-Part-Supplier

○ 5 tables: 1 for each products, parts and suppliers. 1 table maps products to parts. 1 table 
maps partos to suppliers

○ Transactions: 
■ Order-Product (MPT): reads parts of a product and decrement the stock quantity of the 

parts
■ LookupProduct (MPT): (read-only) retrieve parts and their stock quantities
■ UpdateProductPart (SPT): updates product-to-parts mapping 
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Contention

32

● Scheduling is the bottleneck in CALVIN.
● Fully parallelized operation because they 

are independent operations.
● But it should degrade under high 

contention few data items are accessed 
which are serialized unless replication is 
used 



Contention
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All are good until here



Contention
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Can this threshold be 
extended by adding more 

servers?



Contention
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Not difference under very 
high contention.



Contention
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Update Rate
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● Scheduler bottleneck
● No network communication 

during the execution of the 
transaction



MPT
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● Overhead of remote request. 
● Overhead 2PC and impact of 

locking during 2PC

Number of operations per 
transaction is increased 
from 10 to 16.



Latency
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Latency
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Scalability (no contention)
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Scalability (medium contention)
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Scalability (high contention)
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● USEFUL WORK: All time that the workers spend doing computation on behalf 
of read or update operations. 

● TXN MANAGER: The time spent updating transaction metadata and cleaning 
up committed transactions. 

● CC MANAGER: The time spent acquiring locks or validating as part of the 
protocol. For CALVIN, this includes time spent by the sequencer and 
scheduler to compute execution orders. 

● 2PC: The overhead from two-phase commit. 
● ABORT: The time spent cleaning up aborted transactions. 
● IDLE: The time worker threads spend waiting for work.

Scalability (Breakdown)
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Scalability (Breakdown - no contention)
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System is not 
saturated??

MaaT merges 2PC 
prepare and OCC’s 

validation



Scalability (Breakdown - medium contention)
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Scalability (Breakdown - high contention)
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Latency breakdown
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Network speed
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Scalability - TPCC - Payment transaction
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Scalability - TPCC - NewOrder transaction
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Data dependant aborts

● YCSB operation are independent
● Modified YCSB transction to have conditional abort based a value read. 
● 36% decrease in performance compared to 2%-10% descease on other 

protocols. 
○ theta=0.6 , 50% updates

● CALVIN performs worse with higher contention (drops 73K to 19K txn/s)
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Results Summary

Class Algorithm 2PC delay MPT Low 
Contention

High 
Contention

Locking NO_WAIT, 
WAIT_DIE B B A B

Timestamp TIMESTAMP, 
MVCC B B A B

Optimistic OCC B B B A

Deterministic CALVIN NA B B A
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Bottlenecks in DDBMS

● According to the paper, it boils down to the following bottlenecks:

● 2PC delay

○ CALVIN is designed to eliminate that but in case a transaction will need to abort. It needs to 
pay the cost of broadcasting the abort decision

● Data access contention 

○ Read-only contention can be trivially solved by replication

○ Write contention is difficult
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Further research and additional potential solutions

● Authors mentions many aspects for future research and solutions:
○ Impact of recovery mechanisms
○ Leverage better network technologies (e.g. RDMA)
○ Automatic repartitioning [Schism, H-Store]
○ Force a data model adaptation on application developers

■ (e.g. entity group- Helland CIDR’07, G-Store)
○ Semantic based concurrency control methods

● Is there a way to generalize CC protocols into a framework that admits 
different configurations and yield different CC protocols implementation?

○ e.g. Similar to GiST generalizes search tree for indexes, and SP-GiST generalizes 
space-partitioning trees. 

● Contention-aware adaptive concurrency control
○ 2PL or Timestamp under low contention and switch to OCC or CALVIN under high contention

● Evaluating abort rate
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