
An Evaluation of Distributed 
Concurrency Control
Harding, Aken, Pavlo and Stonebraker

Presented by: Thamir Qadah 
For CS590-BDS

1



Outline

● Motivation
● System Architecture
● Implemented Distributed CC protocols

○ 2PL
○ TO
○ OCC
○ Deterministic

● Commitment Protocol
○ 2PC
○ Why CALVIN does not need 2PC

■ What is the tradeoff

● Evaluation environment
○ Workload Specs
○ Hardware Specs

● Discussion
○ Bottlenecks
○ Potentiual soluutions

2



Motivation

● Concerned with: 

○ When does distributing concurrency control benefit performance?

○ When is distribution strictly worse for a given workload?

● Costs of distributed transaction processing are well known [Bernstein et. al 
‘87, Ozsu and Valduriez ‘11] 

○ But, in cloud environments providing high scalability and elasticity, trade-offs are less 
understood. 

● With new proposals of distributed concurrency control protocols, there is no 
comprehensive performance evaluation. 

3



4



Note: Lock-based 
implementations may 
be different (e.g. 
deadlock 
detection/avoidance)

5



Transaction Model

● Deneva uses the concept of stored procedures to model transactions. 

○ No client stalls in-between transaction logical steps

● Support for protocols (e.g. CALVIN) that require READ-SET and WRITE-SET 
to be known in-advanced 

○ DBMS needs to compute that. 

■ Simplest way: run transaction without any CC measures

6



High Level System Architecture

7



High Level System Architecture

Client and Server processes are deployed on different hosted cloud 
instance

8



High Level System Architecture

Communication among processes uses nanomsg socket library

9

http://nanomsg.org/


Cloud Hosted Instance

Client Process

Server Process

I/O Threads Execution Engine 

In-memory storage 
(Hashtable)

Protocol specific components

Other servers 
ProcessesOther servers 

ProcessesOther server 
processes

Timestamp 
Generation

Sync 
via NTPLocal Clock

Lock-table

Scheduler

Sequencer

Waiting Queue

MV Record Store Write-set Tracker

Timetable

Record metadata

Priority Work Queue

● I/O threads responisble for handling 
marshaling and unmarshaling 
transactions, operations, and return 
values.

● Operations of active transactions are 
prioritized over new transactions from 
clients

10



Cloud Hosted Instance

Client Process

Server Process

I/O Threads Execution Engine 

In-memory storage 
(Hashtable)

Protocol specific components

Other servers 
ProcessesOther servers 

ProcessesOther server 
processes

Timestamp 
Generation

Sync 
via NTPLocal Clock

Lock-table

Scheduler

Sequencer

Waiting Queue

MV Record Store Write-set Tracker

Timetable

Record metadata

Priority Work Queue

● Non-blocking execution of transactions
● When a transaction blocks, the thread 

does not block.
● The thread “saves the state of the 

active transaction” and accepts more 
work from the work queue. 

11



Cloud Hosted Instance

Client Process

Server Process

I/O Threads Execution Engine 

In-memory storage 
(Hashtable)

Protocol specific components

Other servers 
ProcessesOther servers 

ProcessesOther server 
processes

Timestamp 
Generation

Sync 
via NTPLocal Clock

Lock-table

Scheduler

Sequencer

Waiting Queue

MV Record Store Write-set Tracker

Timetable

Record metadata

Priority Work Queue

● Local in-memory hashtable 
● No recovery

12



Cloud Hosted Instance

Client Process

Server Process

I/O Threads Execution Engine 

In-memory storage 
(Hashtable)

Protocol specific components

Other servers 
ProcessesOther servers 

ProcessesOther server 
processes

Timestamp 
Generation

Sync 
via NTPLocal Clock

Lock-table

Scheduler

Sequencer

Waiting Queue

MV Record Store Write-set Tracker

Timetable

Record metadata

Priority Work Queue

Data structures that are specific to each 
protocol

13



Cloud Hosted Instance

Client Process

Server Process

I/O Threads Execution Engine 

In-memory storage 
(Hashtable)

Protocol specific components

Other servers 
ProcessesOther servers 

ProcessesOther server 
processes

Timestamp 
Generation

Sync 
via NTPLocal Clock

Lock-table

Scheduler

Sequencer

Waiting Queue

MV Record Store Write-set Tracker

Timetable

Record metadata

Priority Work Queue

Distributed timestamp generation based 
lock system’s clock

14



Transaction Protocols 

● Concurrency Control

○ Two-phase Locking (2PL)

■ NO_WAIT

■ WAIT_DIE

○ Timestamp Ordering (TIMESTAMP)

○ Multi-version concurrency control (MVCC)

○ Optimistic concurrency control (OCC)

○ Deterministic (CALVIN)

● Commitment Protocols

○ Two-phase Commit (2PC)

15



Two-phase Locking (2PL)

● Two phase: 

○ Growing phase: lock acquisition (no lock release)

○ Shrink phase: lock release (no more acquisition)

● NO_WAIT

○ Aborts and restarts the transaction if lock is not available

○ No deadlocks (suffers from excessive aborts)

● WAIT_DIE

○ Utilizes timestamp

○ Older transactions wait, younger transactions abort

○ Locking in shared mode bypasses lock queue (which contains waiting writers)

16



Cloud Hosted Instance

Server Process

I/O Threads Execution Engine 

In-memory storage 
(Hashtable)

Protocol specific components

Other servers 
ProcessesOther servers 

ProcessesOther servers 
Processes

Timestamp 
Generation

Sync 
via NTPLocal Clock

Lock-table

Scheduler

Sequencer

Waiting Queue

MV Record Store Write-set Tracker

Timetable

Record metadata

2PL

Priority Work Queue

17



Timestamp Ordering (TIMESTAMP)

● Executes transactions based on the assigned timestamp order

● No bypassing of wait queue

● Avoids deadlocks by aborting older transactions when they conflict with 
transactions holding records exclusively

18



Cloud Hosted Instance

Server Process

I/O Threads Priority Work Queue Execution Engine 

In-memory storage 
(Hashtable)

Protocol specific components

Other servers 
ProcessesOther servers 

Processes

Timestamp 
Generation

Sync 
via NTPLocal Clock

Lock-table

Scheduler

Sequencer

Waiting Queue

MV Record Store Write-set Tracker

Timetable

Record metadata

TIMESTAMP

Other server 
processes

19



Multi-version Concurrency Control (MVCC)

● Maintain multiple timestamped copies of each record

● Minimizes conflict between reads and writes

● Limit the number of copies stored

● Abort transactions that try to access records that have been garbage 
collected

20



Cloud Hosted Instance

Server Process

I/O Threads Execution Engine 

In-memory storage 
(Hashtable)

Protocol specific components

Other servers 
ProcessesOther servers 

ProcessesOther servers 
Processes

Timestamp 
Generation

Sync 
via NTPLocal Clock

Lock-table

Scheduler

Sequencer

Waiting Queue

MV Record Store Write-set Tracker

Timetable

Record metadata

MVCC

Priority Work Queue

21



Optimistic Concurrency Control (OCC)

● Based on MaaT [Mahmoud et. al, MaaT protocol, VLDB’14]

● Strong-coupling with 2PC:

○ CC’s Validation == 2PC’s Prepare phase

● Maintains time ranges for each transaction

● Validation by constraining the time range of the transaction

○ If time range is valid => COMMIT

○ Otherwise => ABORT

22



Cloud Hosted Instance

Server Process

I/O Threads Execution Engine 

In-memory storage 
(Hashtable)

Protocol specific components

Other servers 
ProcessesOther servers 

Processes

Timestamp 
Generation

Sync 
via NTPLocal Clock

Lock-table

Scheduler

Sequencer

Waiting Queue

MV Record Store Write-set Tracker

Timetable

Record metadata
Other server 
processes

Priority Work Queue

OCC

23



Deterministic (CALVIN)

● Discussed in previous class

● Key idea: impose a deterministic order on a batch of transactions

● Avoids 2PC

● Unlike others, requires READ_SET and WRITE_SET of transactions to be 
known a priori, otherwise needs to be computed before starting the execution 
of the transaction

● In Deneva, a dedicated thread is used for each of sequencer and scheduler. 

24



Cloud Hosted Instance

Server Process

I/O Threads Execution Engine 

In-memory storage 
(Hashtable)

Protocol specific components

Other servers 
ProcessesOther servers 

Processes

Timestamp 
Generation

Sync 
via NTPLocal Clock

Lock-table

Scheduler

Sequencer

Waiting Queue

MV Record Store Write-set Tracker

Timetable

Record metadata
Other server 
processes

Priority Work Queue

CALVIN

25



Evaluation “Hardware”

● Amazon EC2 instances (m4.2xlarge)

26



Evaluation Methodology 

● Table partitions are loaded on each server before each experiment

● Number of open client connections: 10K

● 60 seconds warmup 

● 60 seconds measurements

● Throughput measure as the number of successfully completed

● Restart an aborted transaction (due to CC) after a penalization period

27



Evaluation Workload

● YCSB
● TPC-C: warehouse order processing system
● Product-Part-Supplier

28



Evaluation Workload

● YCSB
○ Single table with 1 primary key and 10 columns of 100B each

■ ~ 16 million records per partition => 16GB per node
○ Each transaction accesses 10 records with independent read and write operation in random 

order
○ Zipfian distribution of access with theta in [0,0.9]

● TPC-C: warehouse order processing system
● Product-Part-Supplier

29



Evaluation Workload

● YCSB
● TPC-C: warehouse order processing system

○ 9 tables partitioned by warehouse_id
○ Item table is read-only and replicated at every server
○ Implemented two transaction of TPCC specs (88% of workload)

■ Payment: 15% chance to access a different partition
■ NewOrder: ~10% are multi-partition transactions

● Product-Part-Supplier

30



Evaluation Workload

● YCSB
● TPC-C: warehouse order processing system
● Product-Part-Supplier

○ 5 tables: 1 for each products, parts and suppliers. 1 table maps products to parts. 1 table 
maps partos to suppliers

○ Transactions: 
■ Order-Product (MPT): reads parts of a product and decrement the stock quantity of the 

parts
■ LookupProduct (MPT): (read-only) retrieve parts and their stock quantities
■ UpdateProductPart (SPT): updates product-to-parts mapping 

31



Contention

32

● Scheduling is the bottleneck in CALVIN.
● Fully parallelized operation because they 

are independent operations.
● But it should degrade under high 

contention few data items are accessed 
which are serialized unless replication is 
used 



Contention

33

All are good until here



Contention

34

Can this threshold be 
extended by adding more 

servers?



Contention

35

Not difference under very 
high contention.



Contention

36



Update Rate

37

● Scheduler bottleneck
● No network communication 

during the execution of the 
transaction



MPT

38

● Overhead of remote request. 
● Overhead 2PC and impact of 

locking during 2PC

Number of operations per 
transaction is increased 
from 10 to 16.



Latency

39



Latency

40



Scalability (no contention)

41



Scalability (medium contention)

42



Scalability (high contention)

43



● USEFUL WORK: All time that the workers spend doing computation on behalf 
of read or update operations. 

● TXN MANAGER: The time spent updating transaction metadata and cleaning 
up committed transactions. 

● CC MANAGER: The time spent acquiring locks or validating as part of the 
protocol. For CALVIN, this includes time spent by the sequencer and 
scheduler to compute execution orders. 

● 2PC: The overhead from two-phase commit. 
● ABORT: The time spent cleaning up aborted transactions. 
● IDLE: The time worker threads spend waiting for work.

Scalability (Breakdown)

44



Scalability (Breakdown - no contention)

45

System is not 
saturated??

MaaT merges 2PC 
prepare and OCC’s 

validation



Scalability (Breakdown - medium contention)

46



Scalability (Breakdown - high contention)

47



Latency breakdown

48



Network speed

49



50



Scalability - TPCC - Payment transaction

51



Scalability - TPCC - NewOrder transaction

52



Data dependant aborts

● YCSB operation are independent
● Modified YCSB transction to have conditional abort based a value read. 
● 36% decrease in performance compared to 2%-10% descease on other 

protocols. 
○ theta=0.6 , 50% updates

● CALVIN performs worse with higher contention (drops 73K to 19K txn/s)

53



Results Summary

Class Algorithm 2PC delay MPT Low 
Contention

High 
Contention

Locking NO_WAIT, 
WAIT_DIE B B A B

Timestamp TIMESTAMP, 
MVCC B B A B

Optimistic OCC B B B A

Deterministic CALVIN NA B B A

54



Bottlenecks in DDBMS

● According to the paper, it boils down to the following bottlenecks:

● 2PC delay

○ CALVIN is designed to eliminate that but in case a transaction will need to abort. It needs to 
pay the cost of broadcasting the abort decision

● Data access contention 

○ Read-only contention can be trivially solved by replication

○ Write contention is difficult

55



Further research and additional potential solutions

● Authors mentions many aspects for future research and solutions:
○ Impact of recovery mechanisms
○ Leverage better network technologies (e.g. RDMA)
○ Automatic repartitioning [Schism, H-Store]
○ Force a data model adaptation on application developers

■ (e.g. entity group- Helland CIDR’07, G-Store)
○ Semantic based concurrency control methods

● Is there a way to generalize CC protocols into a framework that admits 
different configurations and yield different CC protocols implementation?

○ e.g. Similar to GiST generalizes search tree for indexes, and SP-GiST generalizes 
space-partitioning trees. 

● Contention-aware adaptive concurrency control
○ 2PL or Timestamp under low contention and switch to OCC or CALVIN under high contention

● Evaluating abort rate

56


