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Motivation

e Concerned with:
o  When does distributing concurrency control benefit performance?

o  When is distribution strictly worse for a given workload?

e Costs of distributed transaction processing are well known [Bernstein et. al
‘87, Ozsu and Valduriez “11]

o But, in cloud environments providing high scalability and elasticity, trade-offs are less
understood.

e With new proposals of distributed concurrency control protocols, there is no
comprehensive performance evaluation.
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Transaction Model

e Deneva uses the concept of stored procedures to model transactions.

o No client stalls in-between transaction logical steps

e Support for protocols (e.g. CALVIN) that require READ-SET and WRITE-SET
to be known in-advanced

o DBMS needs to compute that.

m  Simplest way: run transaction without any CC measures
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High Level System Architecture

Hosted Cloud Infrastructure

Server Process

Input messages

[Client Process 1] Server Process 1
Hosted Instance A Hosted Instance D
3 A

—

[Client Process 2] Server Process 2

Hosted Instance B Hosted Instance E
R

[Client Process 3] Server Process 3

Hosted Instance C Hosted Instance F

Protocol-
specific state
(e.g., lock table)

Multi-Core

Execution Engine

eJelele

Local, In-Memory
Data Storage

_

Communication among processes uses nanomsgq socket library



http://nanomsg.org/
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Transaction Protocols

e Concurrency Control
o Two-phase Locking (2PL)
m NO_WAIT
s WAIT_DIE
o Timestamp Ordering (TIMESTAMP)
o  Multi-version concurrency control (MVCC)
o  Optimistic concurrency control (OCC)

o Deterministic (CALVIN)

e Commitment Protocols

o Two-phase Commit (2PC)
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Two-phase Locking (2PL)

e T[wo phase:

o Growing phase: lock acquisition (no lock release)

o Shrink phase: lock release (no more acquisition)
e NO WAIT

o Aborts and restarts the transaction if lock is not available

o No deadlocks (suffers from excessive aborts)
e WAIT DIE

o Utilizes timestamp
o Older transactions wait, younger transactions abort

o Locking in shared mode bypasses lock queue (which contains waiting writers)
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Timestamp Ordering (TIMESTAMP)

e Executes transactions based on the assigned timestamp order
e No bypassing of wait queue

e Avoids deadlocks by aborting older transactions when they conflict with
transactions holding records exclusively
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Multi-version Concurrency Control (MVCC)

e Maintain multiple timestamped copies of each record
e Minimizes conflict between reads and writes
e Limit the number of copies stored

e Abort transactions that try to access records that have been garbage
collected
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Optimistic Concurrency Control (OCC)

e Based on MaaT [Mahmoud et. al, MaaT protocol, VLDB’14]
e Strong-coupling with 2PC:
o CC’s Validation == 2PC’s Prepare phase
e Maintains time ranges for each transaction
e Validation by constraining the time range of the transaction

o Iftime range is valid => COMMIT

o Otherwise => ABORT
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Deterministic (CALVIN)

Discussed in previous class
Key idea: impose a deterministic order on a batch of transactions
Avoids 2PC

Unlike others, requires READ SET and WRITE_SET of transactions to be
known a priori, otherwise needs to be computed before starting the execution
of the transaction

In Deneva, a dedicated thread is used for each of sequencer and scheduler.
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Evaluation “Hardware”

e Amazon EC2 instances (m4.2xlarge)

M4 instances are the latest generation of General Purpose
Instances. This family provides a balance of compute, memory,
and network resources, and it is a good choice for many
applications.

Features:

« 2.3 GHz Intel Xeon® E5-2686 v4 (Broadwell) processors or 2.4
GHz Intel Xeon® E5-2676 v3 (Haswell) processors

- EBS-optimized by default at no additional cost
» Support for Enhanced Networking

« Balance of compute, memory, and network resources

SSD
Mem Dedicated EBS
Model vCPU . Storage )
(GiB) Bandwidth (Mbps)
(GB)
EBS-
m4.large 2 450
only
EBS-
m4.xlarge 4 16 750
only
EBS-
m4.2xlarge 8 32 1,000
only
EBS-
m4.4xlarge 16 64 2,000
only
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Evaluation Methodology

e Table partitions are loaded on each server before each experiment
e Number of open client connections: 10K

e 60 seconds warmup

e 60 seconds measurements

e Throughput measure as the number of successfully completed

e Restart an aborted transaction (due to CC) after a penalization period
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Evaluation Workload

e YCSB
e TPC-C: warehouse order processing system
e Product-Part-Supplier
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Evaluation Workload

e YCSB
o Single table with 1 primary key and 10 columns of 100B each
m ~ 16 million records per partition => 16GB per node
o Each transaction accesses 10 records with independent read and write operation in random
order

o Zipfian distribution of access with theta in [0,0.9]
e TPC-C: warehouse order processing system

e Product-Part-Supplier
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Evaluation Workload

e YCSB

e TPC-C: warehouse order processing system
o 9 tables partitioned by warehouse _id
o Item table is read-only and replicated at every server
o Implemented two transaction of TPCC specs (88% of workload)
m Payment: 15% chance to access a different partition
m  NewOrder: ~10% are multi-partition transactions

e Product-Part-Supplier
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Evaluation Workload

e YCSB

e TPC-C: warehouse order processing system
e Product-Part-Supplier
o 5 tables: 1 for each products, parts and suppliers. 1 table maps products to parts. 1 table
maps partos to suppliers
o Transactions:
m  Order-Product (MPT): reads parts of a product and decrement the stock quantity of the
parts

LookupProduct (MPT): (read-only) retrieve parts and their stock quantities
UpdateProductPart (SPT): updates product-to-parts mapping
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Scalability (medium contention)
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Scalability (high contention)
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Scalability (Breakdown)

e USEFUL WORK: All time that the workers spend doing computation on behalf
of read or update operations.

e TXN MANAGER: The time spent updating transaction metadata and cleaning
up committed transactions.

e CC MANAGER: The time spent acquiring locks or validating as part of the
protocol. For CALVIN, this includes time spent by the sequencer and
scheduler to compute execution orders.

e 2PC: The overhead from two-phase commit.

e ABORT: The time spent cleaning up aborted transactions.

e IDLE: The time worker threads spend waiting for work.
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Scalability (Breakdown - no contention)
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Scalability (Breakdown - medium contention)
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Scalability (Breakdown - high contention)
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Latency breakdown
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Figure 8: Latency Breakdown — Average latency of a transaction’s final
execution before commit.
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Table 2: Multi-Region Cluster — Throughput of a 2-node cluster with
servers in AWS US East and US West regions.

Algorithm | CALVIN OCC MVCC
Throughput 8,412 11312 5,486

Algorithm | NO_WAIT | TIMESTAMP | WAIT_DIE
Throughput 15,921 4,635 4,736
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Scalability - TPCC - Payment transaction
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Scalability - TPCC - NewOrder transaction
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Data dependant aborts

e YCSB operation are independent
e Modified YCSB transction to have conditional abort based a value read.
e 36% decrease in performance compared to 2%-10% descease on other

protocols.
o theta=0.6 , 50% updates

e CALVIN performs worse with higher contention (drops 73K to 19K txn/s)
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Results Summary

Class Algorithm 2PC delay
| NO_WAIT,
Locking WAIT_DIE =
. TIMESTAMP,
Timestamp MVCC B
Optimistic OCC B

Deterministic CALVIN NA

MPT

Low
Contention

A

High
Contention

B
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Bottlenecks in DDBMS

e According to the paper, it boils down to the following bottlenecks:

e 2PC delay

o CALVIN is designed to eliminate that but in case a transaction will need to abort. It needs to
pay the cost of broadcasting the abort decision

e Data access contention

o Read-only contention can be trivially solved by replication

o  Write contention is difficult
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Further research and additional potential solutions

e Authors mentions many aspects for future research and solutions:
Impact of recovery mechanisms
Leverage better network technologies (e.g. RDMA)
Automatic repartitioning [Schism, H-Store]
Force a data model adaptation on application developers
m (e.g. entity group- Helland CIDR’07, G-Store)
o Semantic based concurrency control methods

O O O O

e |Is there a way to generalize CC protocols into a framework that admits

different configurations and yield different CC protocols implementation?
o e.g. Similar to GiST generalizes search tree for indexes, and SP-GiST generalizes
space-partitioning trees.

e Contention-aware adaptive concurrency control
o 2PL or Timestamp under low contention and switch to OCC or CALVIN under high contention

e Evaluating abort rate
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