An Evaluation of Distributed
Concurrency Control

Harding, Aken, Pavlo and Stonebraker
Presented by: Thamir Qadah
For CS590-BDS

Outline

e Motivation
e System Architecture

e Implemented Distributed CC protocols
o 2PL
o TO
o OCC
o Deterministic
e Commitment Protocol
o 2PC
o Why CALVIN does not need 2PC
m What is the tradeoff

e FEvaluation environment
o Workload Specs
o Hardware Specs

e Discussion
o Bottlenecks
o Potentiual soluutions

Motivation

e Concerned with:
o When does distributing concurrency control benefit performance?

o When is distribution strictly worse for a given workload?

e Costs of distributed transaction processing are well known [Bernstein et. al
‘87, Ozsu and Valduriez “11]

o But, in cloud environments providing high scalability and elasticity, trade-offs are less
understood.

e With new proposals of distributed concurrency control protocols, there is no
comprehensive performance evaluation.

Publication

Experimental Comparisons Performed
Lock TS MV OCC Det None

Tango [7]
Spanner [20]
Granola [21]
Centiman [25]
FaRM [26]
Warp [27]
MaaT [39]
Rococo [41]
Ren et al. [45]
F1 [47]
Calvin [54]
Weli et al. [58]
TaPiR [61]
Lynx [62]

v

v

e
NS
x X X x

> X

Deneva (this study)

x2 |/ |/ v v

Experimental Comparisons Performed

Publication Lock TS MV OCC Det None
Tango [7] v | | |

Dpatinen 24| Note: Lock-based o
Granola [21] v . .

Centiman [25] |mplgmentatlons may |
FaRM [26] be different (e.q. X
Warp [27] deadlock X
MaaT [39] v/ | detection/avoidance)
Rococo [41] v

Ren et al. [45] / Z &

F1 [47] T X
Calvin [54] X
Wei et al. [58] e

TaPiR [61] v v

Lynx [62] X
Deneva (this study) | |v' X2 || v e v

Transaction Model

e Deneva uses the concept of stored procedures to model transactions.

o No client stalls in-between transaction logical steps

e Support for protocols (e.g. CALVIN) that require READ-SET and WRITE-SET
to be known in-advanced

o DBMS needs to compute that.

m Simplest way: run transaction without any CC measures

High Level System Architecture

i Hosted Cloud Infrastructure .
--7| Server Process
[Client Process 1] Server Process 1 lnput messages Mul_ti—Core .
Hosted Instance A Hosted Instance D Execution Englne

—— i[eYelele

\
=i}
[Client Process 2 Server Process 2 "\
Hosted Instance B Hosted Instance E ".,‘ S ' .
Local, In-Memory
Data Storage

7 I 1.\ Protocol-

: specific state
[[Client Process 3]] Server Process SJ \‘ (e.g., lock table)

Hosted Instance C Hosted Instance F

High Level System Architecture

Hosted Cloud Infrastructure

[Client Process 1]
Hosted Instance A

[Client Process 2]

Hosted Instance B

[Client Process 3]
Hosted Instance C

Server Process 1

Hosted Instance D

Server Process
Input messages

3 A

—

Server Process 2

Multi-Core
Execution Engine

Hosted Instance E

R

Server Process 3

Hosted Instance F

Protocol-
specific state
(e.g., lock table)

eJelele

Local, In-Memory
Data Storage

Client and Server processes are deployed on different hosted cloud

instance

High Level System Architecture

Hosted Cloud Infrastructure

Server Process

Input messages

[Client Process 1] Server Process 1
Hosted Instance A Hosted Instance D
3 A

—

[Client Process 2] Server Process 2

Hosted Instance B Hosted Instance E
R

[Client Process 3] Server Process 3

Hosted Instance C Hosted Instance F

Protocol-
specific state
(e.g., lock table)

Multi-Core

Execution Engine

eJelele

Local, In-Memory
Data Storage

_

Communication among processes uses nanomsgq socket library

http://nanomsg.org/

Client Process

4

S S S0

I/O Threads Priority Work Queue

N (1D

e |/O threads responisble for handling
marshaling and unmarshaling
transactions, operations, and return
values.

2253

Execution Engine

R
]

In-memory storage

Other server
processes

Sync
via NTP

e Operations of active transactions are (Hashtable)

prioritized over new transactions from

\ clients v
IVIV ReCOora store VVrine-set 1racker
Protocol specific components Timestamp
Generation
Server Process
Local Clock
Cloud Hosted Instance

10

Client Process

2220

I/O Threads Priority Work Queue

e Non-blocking execution of transactions

e \When a transaction blocks, the thread
does not block.

e The thread “saves the state of the

2253

Execution Engine

R
]

In-memory storage

Other server
] processes

Sync
via NTP

: A (Hashtable)
active transaction” and accepts more
work from the work queue.
VIV ReCcOora S1ore VVITIE-SET TTacKer v
Protocol specific components Timestamp
Generation
Server Process
Local Clock
Cloud Hosted Instance

11

Client Process

I/O Threads .

% ? % e Local in-memory hashtable >
e No recovery %

Lock-table < < < <>

Waiting Queue

Other server

Cloud Hosted Instance

Scheduler Record metadata
In-memory storage
_ (Hashtable)
Sequencer Timetable
MV Record Store Write-set Tracker M
Protocol specific components Timestamp
Generation
Server Process
Local Clock

] processes

Sync
via NTP

12

Client Process

Other server

Cloud Hosted Instance

] processes

Sync
via NTP

% ? % Data structures that are specific to each |,
protocol D
I/O Threads ine
r
Lock-table < < < <> /\
Waiting Queue v
Scheduler Record metadata
In-memory storage
_ (Hashtable)
Sequencer Timetable
MV Record Store Write-set Tracker v
Protocol specific components Timestamp
\ _) Generation
[
Local Clock

13

Client Process

222K

\

A

y

I/O Threads Priority Work Queue

| | ([[[\

Distributed timestamp generation based

2253

Execution Engine

R
N

Other server

lock system’s clock 1 processes
In-memory storage
(Hashtable)
MV Record Store Write-set 'I%\’\ v
A

Protocol specific components Timestamp

Generation
Server Process
Sync
Local Clock via NTP
Cloud Hosted Instance 14

Transaction Protocols

e Concurrency Control
o Two-phase Locking (2PL)
m NO_WAIT
s WAIT_DIE
o Timestamp Ordering (TIMESTAMP)
o Multi-version concurrency control (MVCC)
o Optimistic concurrency control (OCC)

o Deterministic (CALVIN)

e Commitment Protocols

o Two-phase Commit (2PC)

15

Two-phase Locking (2PL)

e T[wo phase:

o Growing phase: lock acquisition (no lock release)

o Shrink phase: lock release (no more acquisition)
e NO WAIT

o Aborts and restarts the transaction if lock is not available

o No deadlocks (suffers from excessive aborts)
e WAIT DIE

o Utilizes timestamp
o Older transactions wait, younger transactions abort

o Locking in shared mode bypasses lock queue (which contains waiting writers)

16

2PL

A

2220

I/O Threads Priority Work Queue

[==] CTLD

Waiting Queue

2253

Execution Engine

R
N

Other servers

Cloud Hosted Instance

] Processes

Sync
via NTP

Scheduler Record metadata
In-memory storage
_ (Hashtable)
Sequencer Timetable
MV Record Store Write-set Tracker v
Protocol specific components Timestamp
Generation
Server Process
Local Clock |-

17

Timestamp Ordering (TIMESTAMP)

e Executes transactions based on the assigned timestamp order
e No bypassing of wait queue

e Avoids deadlocks by aborting older transactions when they conflict with
transactions holding records exclusively

18

TIMESTAMP

A

2220

I/O Threads Priority Work Queue

[==] CTLD

Waiting Queue

2253

Execution Engine

R
N

Other server

Cloud Hosted Instance

Scheduler Record metadata
In-memory storage
_ (Hashtable)
Sequencer Timetable
MV Record Store Write-set Tracker v
Protocol specific components Timestamp
Generation
Server Process
Local Clock |«

] processes

Sync
via NTP

19

Multi-version Concurrency Control (MVCC)

e Maintain multiple timestamped copies of each record
e Minimizes conflict between reads and writes
e Limit the number of copies stored

e Abort transactions that try to access records that have been garbage
collected

20

MVCC

A

2220

I/O Threads Priority Work Queue

Lock-table < < < <>

Waiting Queue

2253

Execution Engine

R
N

Other servers

Cloud Hosted Instance

] Processes

Sync
via NTP

Scheduler Record metadata
In-memory storage
_ (Hashtable)
Sequencer Timetable
MV Record Store Write-set Tracker v
Protocol specific components Timestamp
Generation
Server Process
Local Clock |-

21

Optimistic Concurrency Control (OCC)

e Based on MaaT [Mahmoud et. al, MaaT protocol, VLDB’14]
e Strong-coupling with 2PC:
o CC’s Validation == 2PC’s Prepare phase
e Maintains time ranges for each transaction
e Validation by constraining the time range of the transaction

o Iftime range is valid => COMMIT

o Otherwise => ABORT

22

OCC

A

2220

I/O Threads Priority Work Queue

Lock-table < < < <>

Waiting Queue

2253

Execution Engine

R
]

Other server

Cloud Hosted Instance

Scheduler Record metadata ‘
In-memory storage
_ (Hashtable)
Sequencer Timetable
MV Record Store ‘ Write-set Tracker ‘ v
Protocol specific components Timestamp
Generation
Server Process
Local Clock |«

] processes

Sync
via NTP

23

Deterministic (CALVIN)

Discussed in previous class
Key idea: impose a deterministic order on a batch of transactions
Avoids 2PC

Unlike others, requires READ SET and WRITE_SET of transactions to be
known a priori, otherwise needs to be computed before starting the execution
of the transaction

In Deneva, a dedicated thread is used for each of sequencer and scheduler.

24

CALVIN

2253

A

— (0

I/O Threads

Priority Work Queue

‘ Lock-table ‘

‘ Scheduler ‘

(O

Waiting Queue

Record metadata

2253

Execution Engine

R
N

In-memory storage

Other server

] processes

Sync
via NTP

_ (Hashtable)
Sequencer Timetable
MV Record Store Write-set Tracker v
Protocol specific components Timestamp
Generation
Server Process
Local Clock |«
Cloud Hosted Instance

25

Evaluation “Hardware”

e Amazon EC2 instances (m4.2xlarge)

M4 instances are the latest generation of General Purpose
Instances. This family provides a balance of compute, memory,
and network resources, and it is a good choice for many
applications.

Features:

« 2.3 GHz Intel Xeon® E5-2686 v4 (Broadwell) processors or 2.4
GHz Intel Xeon® E5-2676 v3 (Haswell) processors

- EBS-optimized by default at no additional cost
» Support for Enhanced Networking

« Balance of compute, memory, and network resources

SSD
Mem Dedicated EBS
Model vCPU . Storage)
(GiB) Bandwidth (Mbps)
(GB)
EBS-
m4.large 2 450
only
EBS-
m4.xlarge 4 16 750
only
EBS-
m4.2xlarge 8 32 1,000
only
EBS-
m4.4xlarge 16 64 2,000
only

26

Evaluation Methodology

e Table partitions are loaded on each server before each experiment
e Number of open client connections: 10K

e 60 seconds warmup

e 60 seconds measurements

e Throughput measure as the number of successfully completed

e Restart an aborted transaction (due to CC) after a penalization period

27

Evaluation Workload

e YCSB
e TPC-C: warehouse order processing system
e Product-Part-Supplier

28

Evaluation Workload

e YCSB
o Single table with 1 primary key and 10 columns of 100B each
m ~ 16 million records per partition => 16GB per node
o Each transaction accesses 10 records with independent read and write operation in random
order

o Zipfian distribution of access with theta in [0,0.9]
e TPC-C: warehouse order processing system

e Product-Part-Supplier

29

Evaluation Workload

e YCSB

e TPC-C: warehouse order processing system
o 9 tables partitioned by warehouse _id
o Item table is read-only and replicated at every server
o Implemented two transaction of TPCC specs (88% of workload)
m Payment: 15% chance to access a different partition
m NewOrder: ~10% are multi-partition transactions

e Product-Part-Supplier

30

Evaluation Workload

e YCSB

e TPC-C: warehouse order processing system
e Product-Part-Supplier
o 5 tables: 1 for each products, parts and suppliers. 1 table maps products to parts. 1 table
maps partos to suppliers
o Transactions:
m Order-Product (MPT): reads parts of a product and decrement the stock quantity of the
parts

LookupProduct (MPT): (read-only) retrieve parts and their stock quantities
UpdateProductPart (SPT): updates product-to-parts mapping

31

e —

2% 125} ——e——

o) ? e

S X 100 e e s

E e /

o= o e Scheduling is the bottleneck in CALVIN.

— g e Fully parallelized operation because they

E = 50 are independent operations.

o O e But it should degrade under high

— C contention few data items are accessed

U}I — 25 which are serialized unless replication is

N N used ¥
0 K Qo 2

00 01 02 03 04 05 06 07 08 009

Skew Factor (Theta)

Figure 2: Contention — The measured throughput of the protocols on 16
servers when varying the skew factor in the YCSB workload.

—#— CALVIN =@ MVCC —€- NO WAIT == OCC TIMESTAMP — WAIT_DIE2

i
o N
o u

~J
(0]

a1
o

L All are good until here

N
o)

(Thousand txn/s)

System Throughput

a

0.9

0 Nw-giiSe
00 01 02 03 04 05 06 07 0.8

Skew Factor (Theta)

Figure 2: Contention — The measured throughput of the protocols on 16
servers when varying the skew factor in the YCSB workload.

—&— CALVIN =@ MVCC —€—- NO WAIT == OCC TIMESTAMP —ll—= WAIT DIE3

S — 125
<=
g’ﬁ 100
o
EB 75
= &
& > 50
o ©
%)

0

00 01 02 03 04 05 0.6

servers when varying the skew factor in the YCSB workload.

_

Can this threshold be
extended by adding more
servers?

o

Skew Factor (Theta)
Figure 2: Contention — The measured throughput of the protocols on 16

== CALVIN

-@® MVCC

-€- NO WAIT

= = QPCC

TIMESTAMP

—- WAIT DIEs

S — 125
<=
g’ﬁ 100
o
EB 75
= &
& > 50
o ©
%)

0

00 01 02 03 04 05 0.6

Not difference under very
high contention.

o

Skew Factor (Theta)

Figure 2: Contention — The measured throughput of the protocols on 16
servers when varying the skew factor in the YCSB workload.

== CALVIN

-@® MVCC

-€- NO WAIT

= = QPCC

TIMESTAMP

-ll- WAIT _DIE5

S ~ 125
<=
?5 100
o
EB 75
= &
& > 50
o ©
%)

0

00 01 02 03 04 05 0.6

servers when varying the skew factor in the YCSB workload.

Sy

Skew Factor (Theta)
Figure 2: Contention — The measured throughput of the protocols on 16

"\

0.7

T - 1
0.8 0.9

== CALVIN

-@® MVCC

-€- NO WAIT

= = QCC

TIMESTAMP

—- WAIT DIRs

180 (e Scheduler bottleneck \
e No network communicationJ

during the execution of the
transaction

=
a1
o

=
N
o

System Throughput
(Thousand txn/s)
O
o

" e
30 %"‘“ﬁ““%-«ﬂ::;:il
0 - N

0 20 40 60 80 100

% of Update Transactions

Figure 3: Update Rate — The measured throughput of the protocols on 16
servers when varying the number of update transactions (5 reads / 5 updates)
versus read-only transactions (10 reads) in the workload mixture for YCSB
with medium contention (zheta=0.6).

—#— CALVIN =@ MVCC —€- NO WAIT == OCC TIMESTAMP == WAIT_DIE7

Number of operations per

transaction is increased

5 i 750 tfrom 10 to 16.
8
= “*(-'9- l* e Overhead of remote request.
(@) E 600 e Overhead 2PC and impact of
8 = locking during 2PC
= 2 450
=&
= 5 300
D &
el
n il
2. 150
p

0

> 4 6 8 10 12 14 16
Partitions Accessed

Figure 4: Multi-Partition Transactions — Throughput with a varying num-
ber of partitions accessed by each YCSB transaction.

—&— CALVIN =@ MVCC == NO WAIT == OCC TIMESTAMP —ll- WAIT_DIEg

-

Latency (S)
N W B
2 O

=
o

8 16 32 64

Server Count (Log Scale)

Figure 7: 99%ile Latency — Latency from a transaction’s first start to its
final commit for varying cluster size.

—#— CALVIN =@ MVCC —€~- NO WAIT == OCC TIMESTAMP == WAIT_DlEg

-

Latency (S)
N W B
2 O

=
o

8 16 32 64

Server Count (Log Scale)

Figure 7: 99%ile Latency — Latency from a transaction’s first start to its
final commit for varying cluster size.

—#— CALVIN =@ MVCC —€~- NO WAIT == OCC TIMESTAMP == WAIT_DIEq

Scalability (no contention)

n
o
o

320
240
160

(Thousand txn/s)

00]
o

System Throughput

— = ==

1 2 4 8 16 32 64
Server Count (Log Scale)

(a) Read-Only (No Contention)

o

—#— CALVIN =@ MVCC —€~- NO WAIT == OCC TIMESTAMP == WAIT_DIE

Scalability (medium contention)

_ 250
2%
%EZUU
i
E':r:s: 150
=
EElUD
- e ”»
L -
T -l f_,,-r""ﬁ

n Ur_x\’\@ ===8 s ——%

1 2 4 8 16 32 64

Server Count (Log Scale)
(b) Read-Write (Medium Contention)

—&— CALVIN =@ MVCC —€—- NO WAIT == OCC TIMESTAMP —li= WAIT DIE>

Scalability (high contention)

System Throughput
(Thousand txn/s)
w
o

180

e -
w o N Ol
e o

o

Server Count (Log Scale)
(¢) Read-Write (High contention)

== CALVIN

-@® MVCC

- NO_WAIT

= = QCC

TIMESTAMP

—- WAIT_DIE3

Scalability (Breakdown)

e USEFUL WORK: All time that the workers spend doing computation on behalf
of read or update operations.

e TXN MANAGER: The time spent updating transaction metadata and cleaning
up committed transactions.

e CC MANAGER: The time spent acquiring locks or validating as part of the
protocol. For CALVIN, this includes time spent by the sequencer and
scheduler to compute execution orders.

e 2PC: The overhead from two-phase commit.

e ABORT: The time spent cleaning up aborted transactions.

e IDLE: The time worker threads spend waiting for work.

=

B Useful Work Txn Manager EEE CC Manager 1 2PC EEE Abort I |dley

Scalability (Breakdown - no contention)

G C 3! Q

|

.‘
O & W

MaaT merges 2PC
prepare and OCC's (a) Read-Only (No Contention)

System is not
validation saturated??

B Useful Work Txn Manager EEE CC Manager 1 2PC EEE Abort I |dley

[¢2]

Scalability (Breakdown - medium contention)

(b) Read-Write (Medium Contention)

B Useful Work Txn Manager EEE CC Manager 1 2PC EEE Abort I |dley

[«

Scalability (Breakdown - high contention)

¥ \Z
i G ¥

(¢) Read-Write (High Contention)

B Useful Work Txn Manager EEE CC Manager 1 2PC EEE Abort I |dley

~

Latency breakdown

) Processing
CC Blocking
) E= Work Queue
- R0 Message Queue
) @A Other
Bl Network
0.5
0.0
S C’ 5
oW W N a 3 B
e o S P
W «g\ﬂ‘ N

Figure 8: Latency Breakdown — Average latency of a transaction’s final
execution before commit.

48

5 _ 19)
2u b

c 60
5’5
= e 45
— ©
= 5 30
o 2
e 2
7P

0

0.1 1.0 10.0
Network Latency (ms) (Log Scale)

Figure 9: Network Speed — The sustained throughput measured for the
concurrency protocols for YCSB with artificial network delays.

—#— CALVIN =@ MVCC —€~- NO WAIT == OCC TIMESTAMP == WAIT_DIEg

Table 2: Multi-Region Cluster — Throughput of a 2-node cluster with
servers in AWS US East and US West regions.

Algorithm | CALVIN OCC MVCC
Throughput 8,412 11312 5,486

Algorithm | NO_WAIT | TIMESTAMP | WAIT_DIE
Throughput 15,921 4,635 4,736

50

Scalability - TPCC - Payment transaction

.~ 1200
3~
S v 1000
=5
*31: 800
'EE 600
EE 400
D 200
o 8
1 2 4 8 16 32 64

Server Count (Log Scale)
(a) Payment Transaction

—#— CALVIN =@ MVCC —€- NO WAIT == OCC TIMESTAMP

WAIT_DIE1

Scalability - TPCC - NewOrder transaction

System Throughput
(Thousand txn/s)
()}

o
o

1 2 4 8 16 32 64
Server Count (Log Scale)

(b) NewOrder Transaction

== CALVIN

-® MVCC —€—- NO WAIT == OCC TIMESTAMP

WAIT_DlE»

Data dependant aborts

e YCSB operation are independent
e Modified YCSB transction to have conditional abort based a value read.
e 36% decrease in performance compared to 2%-10% descease on other

protocols.
o theta=0.6 , 50% updates

e CALVIN performs worse with higher contention (drops 73K to 19K txn/s)

53

Results Summary

Class Algorithm 2PC delay
| NO_WAIT,
Locking WAIT_DIE =
. TIMESTAMP,
Timestamp MVCC B
Optimistic OCC B

Deterministic CALVIN NA

MPT

Low
Contention

A

High
Contention

B

54

Bottlenecks in DDBMS

e According to the paper, it boils down to the following bottlenecks:

e 2PC delay

o CALVIN is designed to eliminate that but in case a transaction will need to abort. It needs to
pay the cost of broadcasting the abort decision

e Data access contention

o Read-only contention can be trivially solved by replication

o Write contention is difficult

55

Further research and additional potential solutions

e Authors mentions many aspects for future research and solutions:
Impact of recovery mechanisms
Leverage better network technologies (e.g. RDMA)
Automatic repartitioning [Schism, H-Store]
Force a data model adaptation on application developers
m (e.g. entity group- Helland CIDR’07, G-Store)
o Semantic based concurrency control methods

O O O O

e |Is there a way to generalize CC protocols into a framework that admits

different configurations and yield different CC protocols implementation?
o e.g. Similar to GiST generalizes search tree for indexes, and SP-GiST generalizes
space-partitioning trees.

e Contention-aware adaptive concurrency control
o 2PL or Timestamp under low contention and switch to OCC or CALVIN under high contention

e Evaluating abort rate

56

