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Introduction

● What is S-Store?

○ A data processing system that combines stream processing and transaction processing.

○ Extends H-Store to support streaming semantics

● Why is it useful?

○ Traditional stream processing system: No or limited support for transactional guarantees

○ Traditional OLTP systems: No support for data-driven processing



The Era of IoT

●



Traditional Extract-Transform-Load (ETL)















S-Store in BIGDAWG
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Smart Order Routing (SOR) Application

● Same stocks can be traded at different trading venues independently

● A SOR systems takes the client order, and routes it to the venue what 
provides the most benefit the client. 
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Isolation Needed
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The Computational Model

● Guarantees:
○ ACID guarantees for OLTP and Streaming
○ Ordered Execution guarantees

■ Executions follow the dataflow graph for streaming transactions
○ Exactly once processing guarantees for streams 

■ No loss or duplication

● 3 kinds of states:
○ Public tables
○ Windows
○ Streams

● 2 kinds of transactions:
○ OLTP transactions: can only access public tables
○ Streaming transactions: can access all kinds of state



Data and Processing Models

● A stream is an ordered collection of tuples
● Each tuple is associated with a batch-id (e.g. timestamp) that specifies the 

simultaneity and ordering
● Streaming transactions operates on non-overlaping atomic batches of 

tuples. 
● An atomic batch is a finite contiguous subsequence of a stream

○ External to a streaming transaction

● A window is finite contiguous subsequence of a stream
○ Internal to a streaming transaction
○ Have a slide parameter => (sliding window)
○ If slide == window size => (tumbling window)

● Data-driven execution represented as a dataflow (DAG) with nodes 
representing streaming transactions and edges represent the flow of data 
among nodes. 
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Correct Execution 

● A dataflow graph is executed in rounds of atomic batches. 
● Unlike traditional ACID, the execution is constrained by:

○ DAG order constraint
○ Stream order constraint

● In hybrid workloads, an OLTP transaction Ti,j(pi) can be interleave anywhere 
in the schedule. 

● Nested transactions can only commit if all of its sub-transactions commit. 



Fault Tolerance

● S-Store must be able to recover its state. 
● Exactly once processing guarantees is limited to internal state only
● Strong recovery:

○ Uses command-log for committed transactions
○ Replay commands to restore states
○ Limitation: cannot guarantee same results if non-determinism exist in transaction logic

● Weak Recovery:
○ Perform command logging for border transactions only. 
○ Assumes the ability to replay input data streams.



S-Store Architecture
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Experiments

● Single core deployment for data access
● Single core client
● Batch size = 1 tuple
● System comparison used leaderboard benchmark
● Microbenchmarks were used to evaluate triggers and recovery mechanisms















Logging becomes a bottleneck



Strong recovery requires communication with recovery 
manager for each transaction redone from the log



Summary

● Introduces transactional semantics for stream processing

● Introduces push-based for transaction processing

● Enables more efficient processing for emerging applications

● Unified computational model for OLTP and streaming transactions

● Strong Recovery and Weak Recovery



Research Question

● How to support OLAP queries that read from multiple tables in S-Store?

○ OLTP+OLAP+Transactional Streaming

● What is the programming model that is used for programming the dataflow 
graphs?

● Why not using something like LINQ instead of Java+SQL?
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