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Introduction

e \Whatis S-Store?

o A data processing system that combines stream processing and transaction processing.
o Extends H-Store to support streaming semantics

e Why is it useful?
o Traditional stream processing system: No or limited support for transactional guarantees

o Traditional OLTP systems: No support for data-driven processing



The Era of loT
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An Example: TPC-DI
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* 6 heterogeneous sources
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e 3 key parts:
1. Ingest raw data

v' Data collected into flat files
v Heterogeneous data types

v’ Incremental update from an
OLTP source, once a day
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* 3 key parts:
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* 3 key parts:

3. Update warehouse

v’ Bulk loading
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Streaming Data Ingestion

* In modern apps such as loT:
— real-time streams of data from a large number of sources
— majority of these sources report in the form of time-series

— data currency & low latency is key for real-time decision
making & control

v Need a stream-based ingestion architecture

v’ Must pay attention to time-series data type and
operations (both during ingestion & analytics)



An Architecture for Streaming Data Ingestion

DATA STREAMING OLAP |-
COLLECTION ETL BACKEND |5
A A == N
B < QUERY I[ QUERY PROCESSOR]
i /” ETL LIBRARY \}] =
Data Cleaning E ‘5
> Data Transformer OLAP ENGINE \\
) Data Integration
3 e o Data Router ALN DATA 1
5( Data Staging ‘[ MIGRATOR N g
O Data Caching =
2 = DATA > -
g™ (" SUPPORT i
a Transaction Mgr DATA
—> Local Storage WAREHOUSE
Scheduler
B Recovery Mgr Qlobally
—> H |\ Cachemgr J{M \_Consistent Data ;




S-Store in BIGDAWG
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S-Store in BIGDAWG
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Smart Order Routing (SOR) Application

e Same stocks can be traded at different trading venues independently

e A SOR systems takes the client order, and routes it to the venue what
provides the most benefit the client.
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FIX trading Example
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FIX trading Example
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FIX trading Example

FIX

Message

E—

Check and Debit
Order Amount

Buying Power

Update Order

/ %

[ Exchange A }

Exchange B 1

Isolation Needed

Trading Venue
Selection

Customer Orders

OLTP Transactions

Exchange A

Exchange B




The Computational Model

e Guarantees:
o ACID guarantees for OLTP and Streaming
o Ordered Execution guarantees
m Executions follow the dataflow graph for streaming transactions
o Exactly once processing guarantees for streams
m No loss or duplication

e 3 kinds of states:
o Public tables
o  Windows
o Streams
e 2 kinds of transactions:

o OLTP transactions: can only access public tables
o Streaming transactions: can access all kinds of state



Data and Processing Models

e A stream is an ordered collection of tuples

e Each tuple is associated with a batch-id (e.g. timestamp) that specifies the
simultaneity and ordering

e Streaming transactions operates on non-overlaping atomic batches of
tuples.

e An atomic batch is a finite contiguous subsequence of a stream
o External to a streaming transaction

e A window is finite contiguous subsequence of a stream
o Internal to a streaming transaction
o Have a slide parameter => (sliding window)
o If slide == window size => (tumbling window)

e Data-driven execution represented as a dataflow (DAG) with nodes
representing streaming transactions and edges represent the flow of data
among nodes.
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Correct Execution

e A dataflow graph is executed in rounds of atomic batches.

e Unlike traditional ACID, the execution is constrained by:
o DAG order constraint
o  Stream order constraint

e In hybrid workloads, an OLTP transaction Ti,j(pi) can be interleave anywhere
in the schedule.
e Nested transactions can only commit if all of its sub-transactions commit.



Fault Tolerance

e S-Store must be able to recover its state.
e Exactly once processing guarantees is limited to internal state only

e Strong recovery:

o Uses command-log for committed transactions

o Replay commands to restore states

o Limitation: cannot guarantee same results if non-determinism exist in transaction logic
e \Weak Recovery:

o Perform command logging for border transactions only.

o Assumes the ability to replay input data streams.



S-Store Architecture
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Experiments

Single core deployment for data access

Single core client

Batch size = 1 tuple

System comparison used leaderboard benchmark

Microbenchmarks were used to evaluate triggers and recovery mechanisms
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Logging becomes a bottleneck
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Summary

e Introduces transactional semantics for stream processing

e Introduces push-based for transaction processing

e Enables more efficient processing for emerging applications

e Unified computational model for OLTP and streaming transactions

e Strong Recovery and Weak Recovery



Research Question

e How to support OLAP queries that read from multiple tables in S-Store?

o OLTP+OLAP+Transactional Streaming

e \What is the programming model that is used for programming the dataflow
graphs?

e \Why not using something like LINQ instead of Java+SQL?
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