
 : Streaming Meets
Transaction Processing

By Meehan et al.

CS590-BDS
Thamir Qadah

Some slides contains material from the original authors’ slides.

Project Website: http://sstore.cs.brown.edu/

Introduction

● What is S-Store?

○ A data processing system that combines stream processing and transaction processing.

○ Extends H-Store to support streaming semantics

● Why is it useful?

○ Traditional stream processing system: No or limited support for transactional guarantees

○ Traditional OLTP systems: No support for data-driven processing

The Era of IoT

●

Traditional Extract-Transform-Load (ETL)

S-Store in BIGDAWG

S-Store in BIGDAWG

Data Ingestion for the Connected
World
John Meehan, Cansu Aslantas, Jiang
Du, Nesime Tatbul, Stan Zdonik
CIDR 2017, Jan 2017

http://sstore.cs.brown.edu/papers/ingestion-cidr-2017.pdf
http://sstore.cs.brown.edu/papers/ingestion-cidr-2017.pdf
http://sstore.cs.brown.edu/papers/ingestion-cidr-2017.pdf
http://sstore.cs.brown.edu/papers/ingestion-cidr-2017.pdf

Smart Order Routing (SOR) Application

● Same stocks can be traded at different trading venues independently

● A SOR systems takes the client order, and routes it to the venue what
provides the most benefit the client.

FIX trading Example

Update Order

Buying Power Customer Orders OLTP Transactions

FIX
Message

Trading Venue
Selection

Exchange A

Exchange B

Exchange A Exchange B

Check and Debit
Order Amount

FIX trading Example

Update Order

Buying Power Customer Orders

OLTP Transactions

FIX
Message

Trading Venue
Selection

Exchange A

Exchange B

Exchange A Exchange B

Check and Debit
Order Amount

FIX trading Example

Update Order

Buying Power Customer Orders

FIX
Message

Trading Venue
Selection

Exchange A

Exchange B

Exchange A Exchange B

Check and Debit
Order Amount

Isolation Needed

OLTP Transactions

FIX trading Example

Update Order

Buying Power Customer Orders

FIX
Message

Trading Venue
Selection

Exchange A

Exchange B

Exchange A Exchange B

Check and Debit
Order Amount

OLTP Transactions

Ordering Needed

Isolation Needed

FIX trading Example

Update Order

Buying Power Customer Orders

FIX
Message

Trading Venue
Selection

Exchange A

Exchange B

Exchange A Exchange B

Check and Debit
Order Amount

OLTP Transactions

The Computational Model

● Guarantees:
○ ACID guarantees for OLTP and Streaming
○ Ordered Execution guarantees

■ Executions follow the dataflow graph for streaming transactions
○ Exactly once processing guarantees for streams

■ No loss or duplication

● 3 kinds of states:
○ Public tables
○ Windows
○ Streams

● 2 kinds of transactions:
○ OLTP transactions: can only access public tables
○ Streaming transactions: can access all kinds of state

Data and Processing Models

● A stream is an ordered collection of tuples
● Each tuple is associated with a batch-id (e.g. timestamp) that specifies the

simultaneity and ordering
● Streaming transactions operates on non-overlaping atomic batches of

tuples.
● An atomic batch is a finite contiguous subsequence of a stream

○ External to a streaming transaction

● A window is finite contiguous subsequence of a stream
○ Internal to a streaming transaction
○ Have a slide parameter => (sliding window)
○ If slide == window size => (tumbling window)

● Data-driven execution represented as a dataflow (DAG) with nodes
representing streaming transactions and edges represent the flow of data
among nodes.

Abstract Example

T1(s1,w1) T2(s1)
s1

… s1.b2, s1.b1

s2

… s2.b2, s2.b1

s3

...

Definition

Border
Transaction

Interior
Transaction

Abstract Example

T1(s1,w1) T2(s1)
s1

… s1.b2, s1.b1

s2

… s2.b2, s2.b1

s3

...

Definition

Execution

T1,1(s1.b1,w1) T1,2(s1.b2,w1) T2,1(s2.b1) T2,2(s2.b2)

Transaction
Execution

Abstract Example

T1(s1,w1) T2(s1)
s1

… s1.b2, s1.b1

s2

… s2.b2, s2.b1

s3

...

Definition

Execution

T1,1(s1.b1,w1) T1,2(s1.b2,w1) T2,1(s2.b1) T2,2(s2.b2)

State

Stream s1 Window w1 Stream s2 Table for s3

Correct Execution

● A dataflow graph is executed in rounds of atomic batches.
● Unlike traditional ACID, the execution is constrained by:

○ DAG order constraint
○ Stream order constraint

● In hybrid workloads, an OLTP transaction Ti,j(pi) can be interleave anywhere
in the schedule.

● Nested transactions can only commit if all of its sub-transactions commit.

Fault Tolerance

● S-Store must be able to recover its state.
● Exactly once processing guarantees is limited to internal state only
● Strong recovery:

○ Uses command-log for committed transactions
○ Replay commands to restore states
○ Limitation: cannot guarantee same results if non-determinism exist in transaction logic

● Weak Recovery:
○ Perform command logging for border transactions only.
○ Assumes the ability to replay input data streams.

S-Store Architecture

Stream Implementation

TS A1 A2

Stream 1

T1(s1) TS A3 A4

Stream 2

Stream Implementation

TS A1 A2

Stream 1

T1(s1) TS A3 A4

Stream 2

1

2

Batch s1.b1 is ready

Stream Implementation

TS A1 A2

Stream 1

T1(s1) TS A3 A4

Stream 2

1

2

T1,1(s1.b1)

T1,1 is scheduled

Stream Implementation

TS A1 A2

Stream 1

T1(s1) TS A3 A4

Stream 2

1

2

T1,1(s1.b1)

s1,b2 is ready, T1,2 is scheduled, T1,1 produces output

1

2

3

4

T1,2(s1.b1)

Stream Implementation

TS A1 A2

Stream 1

T1(s1) TS A3 A4

Stream 2

T1,1(s1.b1)

s1,b2 is ready, T1,2 is scheduled, T1,1 commits

1

2

3

4

T1,2(s1.b1) 3

4

Stream Implementation

TS A1 A2

Stream 1

T1(s1) TS A3 A4

Stream 2

T1,1(s1.b1)

T1,2 commits

1

2

T1,2(s1.b1) 3

4

Experiments

● Single core deployment for data access
● Single core client
● Batch size = 1 tuple
● System comparison used leaderboard benchmark
● Microbenchmarks were used to evaluate triggers and recovery mechanisms

Logging becomes a bottleneck

Strong recovery requires communication with recovery
manager for each transaction redone from the log

Summary

● Introduces transactional semantics for stream processing

● Introduces push-based for transaction processing

● Enables more efficient processing for emerging applications

● Unified computational model for OLTP and streaming transactions

● Strong Recovery and Weak Recovery

Research Question

● How to support OLAP queries that read from multiple tables in S-Store?

○ OLTP+OLAP+Transactional Streaming

● What is the programming model that is used for programming the dataflow
graphs?

● Why not using something like LINQ instead of Java+SQL?

Thanks You

