Fast Serializable Multi-Version Concurrency Control
for Main-Memory Database Systems

By Thomas Neumann, Tobias Muhlbauer, Alfons Kemper

Presented by Samodya Abeysiriwardane

Transaction Isolation

* ACID (Atomicity, Consistency, Isolation,
Durability)

 Provides the user with the illusion that it will be
executed alone

e Database ensures that concurrent transactions
can be safely ordered. Ideally a serializable
ordering.

Serializability

» 2PL ensures serializability but limits the degree
of concurrency.

- Readers and writers block each other
- Although most transactions are readonly

« Serializability is hard to implement efficiently.

MVCC

Mutli-Version Concurrency Control

Each Update creates a new versoin of the data
object

Therefore concurrent readers can read the old
version => Read-only transactions never have

to wait

But most implementations only provide
Snapshot Isolation (SlI)

Serializable Si

» Sl offers fairly good isolation but some
schedules are not serializable

* Known solution: keep track of the entire read
set of the transaction and verify that its
observed values are consistent with serial order

* Very expensive for read heavy workloads

This paper

« MVCC implementation that is efficient, both for
S| and full serializabllity

* Retain high scan performance of single version
systems

Implementation

* Integrated into HyPer main memory database
* ACID compliant transaction processing
* Queries and transactions generate LLVM code

Implementaion

* In place updates
- High scan speed

 Undo buffer
- No additional overhead

e VersionVector anchors chain of reconstruction deltas
- Newest to oldest

* Versioned Positions

 Version access
- v.pred = null or v.pred. TS =T or v.pred.TS < T.startt

& o
'9 (&J é‘ (:?

& @
o & e," O
& & Accounts 3 %
.@Qg‘ \@{“q\’@@ Owner Bal d_}"o version information stored in additional hidden column in base relation o"so,
ﬁéﬁ%.q,@b\%@“ A g (indexes only store references, i.e., rowlDs, to records in base relations) “,5
— ¢’ ol
\0@ Thomas 10 o PO@ %, A
— latest versionin-place D e, O
Larry 10 o 4"}@ g,
[0,0) Affons 10 s physical before-image deltas (i.e., column values) 8 v E
' — /" inundo buffers - T3] Sally>Wendy |&
Jud 10 ~~ ’ =]
TU I:’ o —’_;L / __Elpij?_l.;ruffer of Ty (Sally—>...) ~ T5| Sally>Henry .é
ohias
ot pe=ses e G I LT | E
' Sally 7 i T A
Hanna 10 a
[0,1) Hasso 10 %
- Undo buffer of TS % Ogd‘ '?Q‘
Mike 10 " N Pe e
- o ” L
e 10 T5,Bal,9 TS,E;a‘al,i{} q,o »-:% S?} iy _
[Betty 10 \\ g Tx| T4| Readonly:z %‘
Cindy 10] — Un do buffer of T3 — Ty| T6| Sally>Mike 'g_‘|
[2.5) Henry 1, | T3,8al,10 13,841, 10 Tz| T7] Readonly:2 g
Praveen 10 - E'
L e [
Wendy 11 < —

main-memory column-store

Figure 1: Multi-version concurrency control example: transferring $1 between Accounts (from — to) and
summing all Balances ()

Serializability Validation

 Complex in other approaches when readset Is
arge

* Limit the validation to the objects that actually
changed

unchanged object
— modified object —#= — — — —
— feleted object ——=n

- created object (phantom) =
created & deleted

object (phantom)
S —
startTime lifetime of T commitTime

Figure 2: Modifications/deletions/creations of data
objects relative to the lifetime of transaction T

predicate space (for 4 predicates)

Interest

b=
a

0.2-

0.1-

Ps:

| between .1 and .2
and

B between 10 and 20

AN

#]

10
intersection of point x

with predicate

Balance

v v

S~ X |

xfo X"

[1=0.13,B=14]

undo buffers under validatlon

Figure 3: Checking data points in the undo buffers
against the predicate space of a transaction

Garbage collection

» Buildup of old versions can be a problem

* Whenever transaction commits do Garbage
collection

 Find oldest committed transaction that has
visible update to an active transaction, then
remove all transaction older than that

51

Examples

. E
r(xo) w([x]) r ([x])w([x]) commit(x.)
Sy ‘b immediate abort due to write-write conflict with X

r(x:) ww = WE.}

W cnmmlt X
") riyo) rEJW('Erir { ?’??} X abort due to read-write conflict: validation fails as
b 5 % X6,Yo,Ye) intersect predicate space of S.
rlyo) r(x) WEJ T
Sg : © succeeds because it is a read-only transaction
riye) r(x) commit

(a) a write-write conflict and a read-write conflict

Examples

Ta
51': T T T | i]
r(xg)i([e])d (lu])w (| x]) commit(x,,0,,4)
S, | . Ts. > abort because P(xo)=true

rp(Xa) ra(Zo)w(|Z|) Test P(x;),Qlx,),P(xs),Qlxs),Pos),Qlos),P{ug),Qlug)
T.. - abortifeither Testis true:
31— 5" S(o:) indicates phantom
bl WD Test sx),S(x:),5(05),S(uo

(¢) a read-write conflict, a read-delete conflict, and a phantom conflict

S

Evaluation

1000M f—g@- g avasini-—acpasipn EE TN TR

5

o —

'EE‘E» 750M

5T

= o 500M o)

il realistic scenarios

= o50M with garbage collection

[
oM : ; ; o
0.00001% 0.0001% 0.001% 0.01% 0.1%

(10) (100) (1k) (10k) (100k)

dirty records out of 100M

----- single-version system —e— scan newest

—&— gran GIdEEt. mﬁ sCan GIdEEt. d'l ﬁr::e::zr:z

Figure 7: Scan performance with disabled garbage
collection: the scan newest transaction only needs to
verify the visibility of records while the scan oldest
transaction needs to undo updates.

Evaluation

Fr IDDDM & &l _“;"EEE.H:“ SCEER = .
I PR T PR i, - T W P :"-.‘,,‘_
27 750M TR
T
3T
=8 500M
< @ 5.5 Improvement
5§ 250M
o]
oM " " } 3
0.00001% 0.0001% 0.001% 0.01% 0.1%
(10) (100) (1k) (10k) (100k)
dirty records out of 100M
----- single-version system —— MVCC, no VP

—e— MVCC, VP s = 210 —— MVCC, VP s = 2¢
MVCC, VP s = 216

Figure 8: Effect of VersionedPositions (VP) syn-
opses per s records on scan performance

Evaluation

100%
? 75%
g 50%
Y 25%
ﬂ% o o o o o
0% 0.0001% 0.001% 0.01% 0.1%
(0) (100) (1k) (10k) (100k)
dirty records out of 100M
[scan []retrieve version

B find first versioned [find first unversioned

Figure 9: Cycle breakdowns of scan-oldest transac-
tions that need to undo 4 updates per dirty record

Conclusion

« An MVCC main-memory database system
Implementation that provides Snapshot
Isolation and full serializability with performance
comparable to a single version main memory
database system.

» Serializability validation technique that is based
on precision locking which does not require to
depend on the whole read set of a transaction.

Possible future work

« Can we handle Write-Write conflicts in another way (than
just aborting) since we can support for multi versions?

* Extending to Disk instead of focussing on main memory
since the main data structures are not necessarily bound
to main memory. And also this will let the user better
exploit the feature of long running readonly transaction
without being blocked by other concurrent transactions.

* Improve the protocol so that it does not depend on an
unbounded timestamp counter

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

