

Fast Serializable Multi-Version Concurrency Control
for Main-Memory Database Systems

By Thomas Neumann, Tobias Mühlbauer, Alfons Kemper

Presented by Samodya Abeysiriwardane

Transaction Isolation

● ACID (Atomicity, Consistency, Isolation,
Durability)

● Provides the user with the illusion that it will be
executed alone

● Database ensures that concurrent transactions
can be safely ordered. Ideally a serializable
ordering.

Serializability

● 2PL ensures serializability but limits the degree
of concurrency.
– Readers and writers block each other

– Although most transactions are readonly

● Serializability is hard to implement efficiently.

MVCC

● Mutli-Version Concurrency Control
● Each Update creates a new versoin of the data

object
● Therefore concurrent readers can read the old

version => Read-only transactions never have
to wait

● But most implementations only provide
Snapshot Isolation (SI)

Serializable SI

● SI offers fairly good isolation but some
schedules are not serializable

● Known solution: keep track of the entire read
set of the transaction and verify that its
observed values are consistent with serial order

● Very expensive for read heavy workloads

This paper

● MVCC implementation that is efficient, both for
SI and full serializability

● Retain high scan performance of single version
systems

Implementation

● Integrated into HyPer main memory database
● ACID compliant transaction processing
● Queries and transactions generate LLVM code

Implementaion

● In place updates
– High scan speed

● Undo buffer
– No additional overhead

● VersionVector anchors chain of reconstruction deltas
– Newest to oldest

● Versioned Positions
● Version access

– v.pred = null or v.pred.TS = T or v.pred.TS < T.startt

Serializability Validation

● Complex in other approaches when readset is
large

● Limit the validation to the objects that actually
changed

Garbage collection

● Buildup of old versions can be a problem
● Whenever transaction commits do Garbage

collection
● Find oldest committed transaction that has

visible update to an active transaction, then
remove all transaction older than that

Examples

Examples

Evaluation

Evaluation

Evaluation

Conclusion

● An MVCC main-memory database system
implementation that provides Snapshot
Isolation and full serializability with performance
comparable to a single version main memory
database system.

● Serializability validation technique that is based
on precision locking which does not require to
depend on the whole read set of a transaction.

Possible future work

● Can we handle Write-Write conflicts in another way (than
just aborting) since we can support for multi versions?

● Extending to Disk instead of focussing on main memory
since the main data structures are not necessarily bound
to main memory. And also this will let the user better
exploit the feature of long running readonly transaction
without being blocked by other concurrent transactions.

● Improve the protocol so that it does not depend on an
unbounded timestamp counter

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

