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Transaction Isolation

* ACID (Atomicity, Consistency, Isolation,
Durability)

 Provides the user with the illusion that it will be
executed alone

e Database ensures that concurrent transactions
can be safely ordered. Ideally a serializable
ordering.



Serializability

» 2PL ensures serializability but limits the degree
of concurrency.

- Readers and writers block each other
- Although most transactions are readonly

« Serializability is hard to implement efficiently.



MVCC

Mutli-Version Concurrency Control

Each Update creates a new versoin of the data
object

Therefore concurrent readers can read the old
version => Read-only transactions never have

to wait

But most implementations only provide
Snapshot Isolation (SlI)




Serializable Si

» Sl offers fairly good isolation but some
schedules are not serializable

* Known solution: keep track of the entire read
set of the transaction and verify that its
observed values are consistent with serial order

* Very expensive for read heavy workloads



This paper

« MVCC implementation that is efficient, both for
S| and full serializabllity

* Retain high scan performance of single version
systems



Implementation

* Integrated into HyPer main memory database
* ACID compliant transaction processing
* Queries and transactions generate LLVM code



Implementaion

* In place updates
- High scan speed

 Undo buffer
- No additional overhead

e VersionVector anchors chain of reconstruction deltas
- Newest to oldest

* Versioned Positions

 Version access
- v.pred = null or v.pred. TS =T or v.pred.TS < T.startt
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Figure 1: Multi-version concurrency control example: transferring $1 between Accounts (from — to) and
summing all Balances ()



Serializability Validation

 Complex in other approaches when readset Is
arge

* Limit the validation to the objects that actually
changed



unchanged object
— modified object —#= — — — —
— feleted object ——=n

- created object (phantom) =
created & deleted

object (phantom)
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startTime lifetime of T commitTime

Figure 2: Modifications/deletions/creations of data
objects relative to the lifetime of transaction T



predicate space (for 4 predicates)

Interest

b=
a

0.2-

0.1-

Ps:

| between .1 and .2
and

B between 10 and 20

AN

#]

10
intersection of point x

with predicate

Balance

v v

S~ X |

xfo X"

[1=0.13,B=14]

undo buffers under validatlon

Figure 3: Checking data points in the undo buffers
against the predicate space of a transaction



Garbage collection

» Buildup of old versions can be a problem

* Whenever transaction commits do Garbage
collection

 Find oldest committed transaction that has
visible update to an active transaction, then
remove all transaction older than that
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Examples
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Evaluation
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Figure 7: Scan performance with disabled garbage
collection: the scan newest transaction only needs to
verify the visibility of records while the scan oldest
transaction needs to undo updates.



Evaluation
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Evaluation
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Figure 9: Cycle breakdowns of scan-oldest transac-
tions that need to undo 4 updates per dirty record



Conclusion

« An MVCC main-memory database system
Implementation that provides Snapshot
Isolation and full serializability with performance
comparable to a single version main memory
database system.

» Serializability validation technique that is based
on precision locking which does not require to
depend on the whole read set of a transaction.



Possible future work

« Can we handle Write-Write conflicts in another way (than
just aborting) since we can support for multi versions?

* Extending to Disk instead of focussing on main memory
since the main data structures are not necessarily bound
to main memory. And also this will let the user better
exploit the feature of long running readonly transaction
without being blocked by other concurrent transactions.

* Improve the protocol so that it does not depend on an
unbounded timestamp counter
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