
Authors : Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke,

Nuno Preguiça, and Rodrigo Rodrigues

Presenter: Devesh Kumar Singh

• Internet users globally distributed

• Higher Latency => poor user experience => loss in revenue

• Replicate data across geographically diverse sites

• Serve users from closest/least loaded site

• Need to decide on consistency models

• Single server behavior with natural semantics like linearizability

• Coordination overhead between replicas, amplified in geo-replication

• High Latency for remote clients

• e.g Yahoo PNUTS

• Multi server behavior with short term state divergence

• Conflict resolution by last writer wins etc.

• Low latency for remote users, might cause undesirable behavior

• e.g Amazon Dynamo

Eventual Consistency

Partially ordered Blue
ops

Strong consistency

Totally ordered Red ops

Red-Blue consistency

Low latency blue ops
when possible,
Coordination for Red ops
only when necessary

 RedBlue order

 Red operations must be totally ordered

 Blue operations order can vary from site to site

Site A: A1 B1 R1 B2 A2 R2 R3 B3

Site B: B1 B2 A1 R1 R2 A2 B3 R3

 Causal serialization

 A site has a causal serialization of the RedBlue order if the ordering is a linear extension of
the RedBlue order

 State convergence

 All causal serializations of the RedBlue order reach the same state

 All Blue orders must be globally commutative

 Red Blue Consistency

 Each site applies operations according to the causal serialization of the RedBlue order

Initial: balance = 100, interest = 0.05

Alice in EU Bob in US

deposit(20) accrueinterest()

accrueinterest() deposit(20)

100 100

120 105

125126

 Problem: Different execution order lead to divergent state

 Cause: accrueinterest doesn’t commute with deposit

 Solution: Mark all as Red for convergence, but Red is slow

 Better Solution: Split non-commutative operations into two

 Compute the amount of interest accrued

 Treat computed value as deposit

accrueinterest():

delta = balance * interest

balance = balance + delta

accrueinterest_gen():

delta = balance * interest

accrueinterest(delta):

balance = balance +

delta

 Generator Operation

 Only executed at the primary site against a system state

 Produces no side effects

 Determines state transitions that would occur

 Produces shadow operations

 Shadow Operation

 Applies the state transitions to all the sites including the primary
site

 Must produce the same effects as the original operation given the
original state for the Generator operation

Initial: balance = 100, interest = 0.05

Alice in EU Bob in US

deposit(20): +20 accrueinterest: +5

+20 +5

+5 +20

100 100

120 105

125125

Initial: balance = 100, interest = 0.05

Alice in EU Bob in US

withdraw(100): -100 withdraw(80): -80

-100 -80

-80 -100

125

25

-55

125

45

-55

 Problem: Different execution orders lead to a negative balance.

 Cause: Blue operations that potentially break invariants execute
without coordination.

 Solution: We must label successful withdrawal (withdrawAck’) as
Red

 Experiments with:

 E-commerce benchmarks: TPC-W, RUBiS

 Social networking app: Quoddy

 Deployment in Amazon EC2

 spanning 5 sites (US-East, US-West, Ireland, Brazil, Singapore) –

 locating users in all five sites and directing their requests to closest
server

 RedBlue consistency allows strong consistency and eventual
consistency to coexist.

 Generator/shadow operation extends the space of fast operations.

 A precise labeling methodology allows for systems to be fast and
behave as expected.

 Experimental results show our solution improves both latency and
throughput.

