CON SI FENT WE

Authors : Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke,
Nuno Preguic¢a, and Rodrigo Rodrigues

Presenter: Devesh Kumar Singh

Injected latency to user responses (ms)

0O 500 1000 1500 2000 2500
O
Change in
revenue per 1 Microsoft
user (%) OINg

t’

7SS
o T

-5

Internet users globally distributed

Higher Latency => poor user experience => loss in revenue
Replicate data across geographically diverse sites

Serve users from closest/least loaded site

Need to decide on consistency models

®

STRONG CONSISTENCY
|

/

L 00 |
._ //_ / 7~ Oh, can't
- o) wait ages for

Single server behavior with natural semantics like linearizability
Coordination overhead between replicas, amplified in geo-replication
High Latency for remote clients

e.g Yahoo PNUTS @

EVENTUAL CONSISTENCY
eV & ey oo

first half of

my car?
| t
20

-

* Multi server behavior with short term state divergence
* Conflict resolution by last writer wins etc.
* Low latency for remote users, might cause undesirable behavior

* e.g Amazon Dynamo @

RED-BLUE CONSISTENCY

Strong consistency Red-Blue consistency Eventual Consistency
R1 Al B1
l v | | |
R1 B2
B2
Rz ! ! |

l b1) J

R3 R3 B3 B3
Low latency blue ops ,
Totallv ordered Red when possible, Partially ordered Blue
otally ordered hed opsS Coordination for Red ops ops

only when necessary @

RED-BLUE CONSISTENCY

= Red operations must be totally ordered
= Blue operations order can vary from site to site

Site A: Al Bl R1 B2 A2 R2 R3 B3
Site B: Bl B2 A1 R1 R2 A2 B3 R3

= Causal serialization

= A site has a causal serialization of the RedBlue order if the ordering is a linear extension of
the RedBlue order

= State convergence
= All causal serializations of the RedBlue order reach the same state

= All Blue orders must be globally commutative

= Red Blue Consistency
= Each site applies operations according to the causal serialization of the RedBlue order

@

RED-BLUE CONSISTENT BANK SYSTEM

Initial: balance = 100, interest = 0.05

deposit(float money) {
balance = balance + money;

}
Alice in EU Bob in US

» withdraw (float money) {
1f (balance - money >= 0)
balance = balance - money;
deposit(20) accrueinterest() else
print "failure";
S s |

. , accrueinterest () |
accrueinterest() deposit(20) float delta = balance Xx
interest;

balance = balance + delta;

RED-BLUE CONSISTENT BANK SYSTE

= Problem: Different execution order lead to divergent state

= Cause: accrueinterest doesn’t commute with deposit
= Solution: Mark all as Red for convergence, but Red is slow

= Better Solution: Split non-commutative operations into two
= Compute the amount of interest accrued

= Treat computed value as deposit

accrueinterest(): accrueinterest_gen():
delta = balance * interest delta = balance * interest
balance = balance + delta

accrueinterest(delta):
balance = balance +
delta

®

GENERATOR/SH

= Generator Operation
= Only executed at the primary site against a system state

= Produces no side effects
= Determines state transitions that would occur
= Produces shadow operations

ADOW OPERATIONS

= Shadow Operation
= Applies the state transitions to all the sites including the primary
site
= Must produce the same effects as the original operation given the
original state for the Generator operation

@

BANKING SYSTEM REVISITED

Original/Generator operation

Shadow operation

deposit(float m){ deposit’(float m){
produces
balance = balance + m; 1 3 balance = balance + m;
} }
accrueinterest(){ _ ’
float delta=balance x interest; produces | accrueinterest’(float de/ta){
balance=balance + delta; 1 % balance=balance + delta;
} }
uCeS e .
withdraw(float m){ pr od o+ withdrawAck’(float m)
Wbildnce-iise0) { balance=balance - m;
balance=balance - m; }
print “Error” ‘}} {
}

FAST AND CONSISTENT BANK

Initial: balance = 100, interest = 0.05

Alice in EU Bob in
deposit(20): +20 ° accrueinterest: +5
+

ANOTHER ISSUE

Initial: balance = 100, interest = 0.05

Bob in US
withdraw(100): -100 withdraw(80): -80

po
- PN
L T.

ANOTHER ISSUE

= Problem: Different execution orders lead to a negative balance.

= Cause: Blue operations that potentially break invariants execute
without coordination.

= Solution: We must label successful withdrawal (withdrawAck’) as
Red

RED OR BLUE?

Ensuring state / a shadow /
convergence operation u

commutes
with all

s . others?
Ensuring invariant

preservation

|
[Red

breaks
invariants?

—

RED BLUE CONSISTENT BANKING

Alice in EU
A deposit’(20)

Bob in US

A accrueinterest’(5)

a v
_ave w withdrawAck’(60)
A withdrawFail’() 4° "~

: v

v A despoit’(10)
* withdrawAck’(40) - .

SO
% withdrawAck’(30)

(a) RedBlue order O of banking shadow operations

accrueinterest()

& vithdraw(60)

<:deposit(10)

balancc 35 Quhdmw(30)

Alice in EU Bob in US
balance:100 erosi:(ZO) balance:100

A deposst "(20) A accruein:teresr’(5)
balance:120 balance:105

A accmeinéeres! '(5) A depos&'l '(20)
balance:125 balance:125

* withdrawAck (60) * withdran.'.flck (60)
balml'cc:ﬁ Qixhdmw(70) balan'ce'65

A withdrawFail’() A deposé'l "10)
balance:65 Qithdm w(40) bclau'ce:75

A depos:’t '(10) A withdm:vF ail’()
balance:75 balance:75

w withdrau".-ick '(40) % mthdranAck 40)
balance:35

B wilhdrauiAck (30) * wathdranAck (30)
balance:5 balauce.s

(b) Convergent and invariant preserving causal serializations of O

EVALUATION

= Experiments with:
= E-commerce benchmarks: TPC-W, RUBiS

= Social networking app: Quoddy

= Deployment in Amazon EC2
= spanning 5 sites (US-East, US-West, Ireland, Brazil, Singapore) —

= locating users in all five sites and directing their requests to closest
server

MOST OPERATIONS ARE BLUE

- # Blue/Red # Blue/Red

Apps # Original update txns update ops # Shadow ops update ops
TPC-W 7 0/7 16 14/2
RUBIS 5 0/5 9 7/2

Quoddy 4 0/4 4 4/0

MOST OPERATIONS ARE BLUE

Originally With shadow ops
workload
Blue (%) Red(%) Blue (%) Red(%)
Browsing mix 96.0 4.0 99.5 0.5
TPC-W Shopping mix 85.0 15.0 99.2 0.8
Ordering mix 63.0 37.0 93.6 6.4
RUBIS Bidding mix 85.0 15.0 97.4 2.6
Quoddy | a mix with 15% update 85.0 15.0 100 0

IMPROVED USER OBSERVED LATEN

W US-East W US-West mlireland ™ Brazil m Singapore

3000 |
2000
Latency
(ms)
1000
D ! .

1-site original TPC-W 5-site TPC-W with Gemini

Average latency for users at all five sites

THROUGHPUT SCALES WITH NO OF SITES

1600

1200

800
Request/s

400

0

~

I N

1-site 1-site 2-site 3-site 4-site 5-site
Original Gemini Gemini Gemini Gemini Gemini

Peak throughput for different deployments

SUMMARY

= RedBlue consistency allows strong consistency and eventual
consistency to coexist.

= Generator/shadow operation extends the space of fast operations.

= A precise labeling methodology allows for systems to be fast and
behave as expected.

= Experimental results show our solution improves both latency and
throughput.

