
Authors : Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke,

Nuno Preguiça, and Rodrigo Rodrigues

Presenter: Devesh Kumar Singh

• Internet users globally distributed

• Higher Latency => poor user experience => loss in revenue

• Replicate data across geographically diverse sites

• Serve users from closest/least loaded site

• Need to decide on consistency models

• Single server behavior with natural semantics like linearizability

• Coordination overhead between replicas, amplified in geo-replication

• High Latency for remote clients

• e.g Yahoo PNUTS

• Multi server behavior with short term state divergence

• Conflict resolution by last writer wins etc.

• Low latency for remote users, might cause undesirable behavior

• e.g Amazon Dynamo

Eventual Consistency

Partially ordered Blue
ops

Strong consistency

Totally ordered Red ops

Red-Blue consistency

Low latency blue ops
when possible,
Coordination for Red ops
only when necessary

 RedBlue order

 Red operations must be totally ordered

 Blue operations order can vary from site to site

Site A: A1 B1 R1 B2 A2 R2 R3 B3

Site B: B1 B2 A1 R1 R2 A2 B3 R3

 Causal serialization

 A site has a causal serialization of the RedBlue order if the ordering is a linear extension of
the RedBlue order

 State convergence

 All causal serializations of the RedBlue order reach the same state

 All Blue orders must be globally commutative

 Red Blue Consistency

 Each site applies operations according to the causal serialization of the RedBlue order

Initial: balance = 100, interest = 0.05

Alice in EU Bob in US

deposit(20) accrueinterest()

accrueinterest() deposit(20)

100 100

120 105

125126

 Problem: Different execution order lead to divergent state

 Cause: accrueinterest doesn’t commute with deposit

 Solution: Mark all as Red for convergence, but Red is slow

 Better Solution: Split non-commutative operations into two

 Compute the amount of interest accrued

 Treat computed value as deposit

accrueinterest():

delta = balance * interest

balance = balance + delta

accrueinterest_gen():

delta = balance * interest

accrueinterest(delta):

balance = balance +

delta

 Generator Operation

 Only executed at the primary site against a system state

 Produces no side effects

 Determines state transitions that would occur

 Produces shadow operations

 Shadow Operation

 Applies the state transitions to all the sites including the primary
site

 Must produce the same effects as the original operation given the
original state for the Generator operation

Initial: balance = 100, interest = 0.05

Alice in EU Bob in US

deposit(20): +20 accrueinterest: +5

+20 +5

+5 +20

100 100

120 105

125125

Initial: balance = 100, interest = 0.05

Alice in EU Bob in US

withdraw(100): -100 withdraw(80): -80

-100 -80

-80 -100

125

25

-55

125

45

-55

 Problem: Different execution orders lead to a negative balance.

 Cause: Blue operations that potentially break invariants execute
without coordination.

 Solution: We must label successful withdrawal (withdrawAck’) as
Red

 Experiments with:

 E-commerce benchmarks: TPC-W, RUBiS

 Social networking app: Quoddy

 Deployment in Amazon EC2

 spanning 5 sites (US-East, US-West, Ireland, Brazil, Singapore) –

 locating users in all five sites and directing their requests to closest
server

 RedBlue consistency allows strong consistency and eventual
consistency to coexist.

 Generator/shadow operation extends the space of fast operations.

 A precise labeling methodology allows for systems to be fast and
behave as expected.

 Experimental results show our solution improves both latency and
throughput.

