
Mostly-Optimistic Concurrency Control for Highly Contended 
Dynamic Workloads on a Thousand Cores 

By Tianzheng Wang, Hideaki Kimura 
Presented by Qing Wei



Goal

● Achieve orders of magnitude higher performance for 
dynamic workloads

● Avoid clobbered reads for high conflict workloads, without 
any centralized mechanisms or heavyweight inter thread 
communication



Gap
● Emerging servers will contain far more CPU cores a deeper, more complex 

memory hierarchy.

○ Extremely high contention (Read only YCSB workload)

■ 2PL 170x slower than OCC due to its overhead to take read locks

■ Slowdown quickly grows with the number of cores and the depth of the memory 
hierarchy due to physical lock contention.

○ Extremely high conflict

■ OCC scales well with low conflict, but suffers high abort ratio under high conflict.

■ With 1 write, 80% of transactions abort

■ With 10 writes, 98% of transactions abort

■ High abort ratio due to deadlocks for pessimistic protocols



Gap-cont.



Gap-cont.
● Issues in Existing DB

○ Page latches

■ Most existing DBs use page latches to protect a physical page rather than logical 
records.

■ Poor performance on thousands of cores

○ Reads become writes

■ Limit scalability and performance

○ Expensive inter thread communication

○ Frequent deadlocks and aborts



Mostly-optimistic Concurrency Control
MOCC must be based on architecture without page latches for reads, like pure 
OCC does.

To scale better, the only mechanism that kicks in for the majority of reads must be 
OCC without any writes to contended memory locations.

On top of OCC, MOCC must selectively acquire read locks on records that would 
cause an abort without locks.

MOCC must avoid deadlocks without any unscalable inter-thread coordination





Recap: Decentralized OCC
● No page latching for reads

● Apply-after-commit

● Deadlock-free verification Protocol

● Missing read locks



Temperature Statistics
● MOCC takes read locks on records whose temperature is above some 

threshold.

○ These records are likely to be updated by concurrent transactions, causing aborts

○ Tracks the number of aborts due to verification

○ Maintain statistics at page level to reduce space overhead

○ Verification failure will increase the temperature of the affected page.



MOCC Protocols
Canonical mode:

Let lm < ln mean that the lock lm is ordered before the lock ln in some universally 
consistent order



MOCC Protocols
Canonical mode:

● In canonical mode, no risk of deadlock

● Can unconditionally take locks like FOEDUS or Silo

● MOCC protocol is designed to:

○ Keep transactions in canonical mode as much as possible

○ Restore canonical mode when not in canonical mode

○ Try taking locks as efficiently as possible without risking deadlocks when canonical mode is 
not attainable



MOCC Protocols
Acquiring and Releasing Locks:

● In traditional 2PL architectures, if a transaction releases a lock before commit 
and then takes another lock, the execution could be non-serializable.

● MOCC is based on OCC, hence serializability is guaranteed no matter 
whether it holds a read lock or not.

● MOCC can safely acquire, release, or re-acquire arbitrary locks in an 
arbitrary order.



MOCC Protocols
Acquiring and Releasing Locks Example:

CLL : {l1, l2, l4} and intends to take a read lock t = l3

Since the transaction is already holding l4, taking a lock ordered before it will leave 
the transaction in non-canonical mode. MOCC can restore canonical mode by 
releasing l4 first, then unconditionally take l3. (No re-take of released locks)

Does not violate serializability (MOCC verifies reads at commit time)



MOCC Protocols
Acquiring and Releasing Locks Example:

CLL : {l1, l2, l4, l5, l6,...l1000} and intends to take a read lock t = l3

Cost to release a large number of locks is high. In such case, MOCC tries to take 
l3 in non-canonical mode without releasing the affected locks.



MOCC Protocols
Retrospective lock list (RLL): a sorted list of locks with their preferred lock modes 
that will likely be required when the thread retries the aborted transaction.

● Constructing RLL

○ All records in the write set are added to RLL in write mode

○ Records in the read set that caused verification failures or in hot pages are added to RLL in 
read mode.

○ If in both read and write set, then maintains a single entry as write mode.

● Using RLL

○ When either of them implies that a pessimistic lock on the record is beneficial, immediately 
take all locks in RLL ordered before the requested lock.

○ The preferred lock mode in RLL overrides the requested lock mode





MOCC Queuing Lock
A scalable, queue-based reader-writer lock with flexible interfaces and 
cancellation support.



MOCC Queuing Lock - Supporting Readers/Writers
Fair variant of the reader-writer MCS lock

A requester (reader or writer) R brings a qnode and joins the queue using the 
wait-free doorway by using an atomic-swap (XCHG) instruction to install pointer to 
point to its qnode on lock.tail. XCHG will return a pointer to the predecessor P.

If P conflicts with R, R must wait for its predecessor to wake it up.

If P and R are both readers, R can enter the critical section if the lock is free or P 
is also a reader and is holding the lock





Evaluation
Set up:



Evaluation-cont.
CC schemes:

● MOCC/OCC

● PCC/Dreadlock/WaitDie/BlindDie

● Orthrus (A recent proposal separates CC and transaction worker threads for 
high contention scenarios)

● ERMIA (MVCC)



Evaluation-cont.
Workloads:

● TPC-C

○ Widely used OLTP benchmark

○ Six tables and five transactions generate moderate read-write conflicts

● YCSB

○ One table and simple, short transactions



Evaluation-cont.
TPC-C Low Contention, Low 
Conflict

Low contention: some read-write 
conflicts.

MOCC: temperature statistics of 
almost all data pages are below 
the threshold, no read locks

ERMIA performs lowest due to 
its centralized design



Evaluation-cont.
YCSB High Contention, No Conflict

Pessimistic approaches, are slower 
than MOCC/FOEDUS because read 
locks and severe physical contention.

Orthrus scales better than PCC, but it 
still needs frequent interthread 
communication.

Ermia‘s centralized thread registration 
becomes a major bottleneck.



High Contention, High Conflict YCSB

Vary the amount of read-modify-operation 
from 0-10

FOEDUS’s throughput significantly drops due 
to massive aborts.

Pessimistic approaches’ performance still 
drops due to aborts caused by deadlocks

MOCC dramatically reduces aborts without 
adding noticeable overhead.



Multi-table, shifting workloads

Two table experiment: First table contains 
one record, second table contains one million

Shifting workload: Dynamically switches the 
nature of the small table every 0.1 second.

Throughput and abort ratio of MOCC over 
time with different temperature thresholds

H=0, significantly (24x) slower due to read 
locks like pessimistic schemes

Lower thresholds result in quicker learning 
and abort ratio drops quickly while large 
thresholds are unstable.



Long Scan Workloads
Every transaction reads one 
record in the small table, and 
scans 1000 record in the 
larger table, then updates the 
record in the small table. 

MOCC performs an order of 
magnitude better than all 
others because of its 
temperature statistics



Conclusion
● MOCC keeps OCC’s low overhead in low contention workloads

● MOCC’s selective locking achieves high scalability in high contention, low 
conflict workloads.

● MOCC with MQL achieves significantly lower abort ratio and higher 
performance than both OCC and pessimistic CC in high contention, high 
conflict workloads

● MOCC can autonomously and quickly adjust itself in more realistic, 
dynamically shifting workloads on multiple tables with different nature

● MOCC is especially beneficial for long running transactions (scan) with high 
conflict operations



Thank You!


