Mostly-Optimistic Concurrency Control for Highly Contended
Dynamic Workloads on a Thousand Cores

Goal

e Achieve orders of magnitude higher performance for
dynamic workloads

e Avoid clobbered reads for high conflict workloads, without

any centralized mechanisms or heavyweight inter thread
communication

Gap

e Emerging servers will contain far more CPU cores a deeper, more complex
memory hierarchy.

o Extremely high contention (Read only YCSB workload)
m 2PL 170x slower than OCC due to its overhead to take read locks

m Slowdown quickly grows with the number of cores and the depth of the memory
hierarchy due to physical lock contention.

o Extremely high conflict
m OCC scales well with low conflict, but suffers high abort ratio under high conflict.
m With 1 write, 80% of transactions abort
m With 10 writes, 98% of transactions abort

m High abort ratio due to deadlocks for pessimistic protocols

»100 - OCC —e— 2PL —u— :
e]
) s i
! e]
E‘ 10+ - 3| -
z /./ S|
2 - 1
= -

2(1) 16 (2) 60 (4) 288 (16)

CPU Cores (# Sockets)

Figure 1: Read-only, highly contended YCSB. OCC scales bet-
ter than 2PL on a deep memory hierarchy, which augments

every single scalability issue to an unprecedented degree.

Abort Ratio
o o o
» o)) o

O
N

o

,r—--*"‘i_ L B B B
More ’than 98% Aborts
- OCC-Aborts —=—
0 2 4 6 8 10

Writes in YCSB Transaction

Figure 2: Read-write, highly contended YCSB. OCC is vulner-
able to aborts under high conflict. In an extreme case, it makes
almost no progress.

Gap-cont.

e Issues in Existing DB
o Page latches

m Most existing DBs use page latches to protect a physical page rather than logical
records.

m Poor performance on thousands of cores
o Reads become writes

m Limit scalability and performance
o Expensive inter thread communication

o Frequent deadlocks and aborts

Mostly-optimistic Concurrency Control

MOCC must be based on architecture without page latches for reads, like pure
OCC does.

To scale better, the only mechanism that kicks in for the majority of reads must be
OCC without any writes to contended memory locations.

On top of OCC, MOCC must selectively acquire read locks on records that would
cause an abort without locks.

MOCC must avoid deadlocks without any unscalable inter-thread coordination

§3.1
1. Decentralized OCC

§3.2 54 MOCC

2. No page latch for

reads = .-

o
»
x
.

[7 | |
Write Set

Temperature Queuing Lock
Statistics {(":"“ ~
) 1 S
" [5.] (Record) v Scalability &
[75] (Record)] \\ Various
,, Functionality
§3.3 T=—— .
MOCC Lock & Commit Protocol
TID A A
H g
Current [R][w] R iw R [
Y N
Retrospective |R||W| |R||W

[/ *tp [/ *Xct Log /

1. RLL to Keep canonical mode

[] []
Private 2. Non-2PL Lock to Restore
Xct Log | \F8884 | || 3. Alternative locking otherwise

Figure 3: MOCC overview and paper outline.

Recap: Decentralized OCC

e No page latching for reads
e Apply-after-commit
e Deadlock-free verification Protocol

e Missing read locks

Temperature Statistics

e MOCC takes read locks on records whose temperature is above some
threshold.

o These records are likely to be updated by concurrent transactions, causing aborts
o Tracks the number of aborts due to verification
o Maintain statistics at page level to reduce space overhead

o Verification failure will increase the temperature of the affected page.

MOCC Protocols

Canonical mode:

Let |, < I, mean that the lock Im is ordered before the lock In in some universally
consistent order

Let CLL be the list of locks the transaction has taken so far.
Suppose the transaction now tries to acquire a set of new locks
N L. The transaction is said to be in canonical mode if and only if
le <ln:Vl, € NL,l. € CLL.

MOCC Protocols

Canonical mode:
e In canonical mode, no risk of deadlock
e Can unconditionally take locks like FOEDUS or Silo

e MOCC protocol is designed to:
o Keep transactions in canonical mode as much as possible

o Restore canonical mode when not in canonical mode

o Try taking locks as efficiently as possible without risking deadlocks when canonical mode is
not attainable

MOCC Protocols

Acquiring and Releasing Locks:

e |n traditional 2PL architectures, if a transaction releases a lock before commit
and then takes another lock, the execution could be non-serializable.

e MOCC is based on OCC, hence serializability is guaranteed no matter
whether it holds a read lock or not.

e MOCC can safely acquire, release, or re-acquire arbitrary locks in an
arbitrary order.

MOCC Protocols

Acquiring and Releasing Locks Example:
CLL : {l4, I, I} and intends to take a read lock t =I5

Since the transaction is already holding |4, taking a lock ordered before it will leave
the transaction in non-canonical mode. MOCC can restore canonical mode by
releasing |, first, then unconditionally take |;. (No re-take of released locks)

Does not violate serializability (MOCC verifies reads at commit time)

MOCC Protocols

Acquiring and Releasing Locks Example:
CLL : {|1, |5, 14, |5, |6a---|1000} and intends to take a read lock t = |3

Cost to release a large number of locks is high. In such case, MOCC tries to take
I in non-canonical mode without releasing the affected locks.

MOCC Protocols

Retrospective lock list (RLL): a sorted list of locks with their preferred lock modes
that will likely be required when the thread retries the aborted transaction.

e Constructing RLL

o All records in the write set are added to RLL in write mode

o Records in the read set that caused verification failures or in hot pages are added to RLL in
read mode.

o If in both read and write set, then maintains a single entry as write mode.

e Using RLL

o When either of them implies that a pessimistic lock on the record is beneficial, immediately
take all locks in RLL ordered before the requested lock.

o The preferred lock mode in RLL overrides the requested lock mode

Algorithm 1 MOCC Protocols.

1 class MoccTransaction: 37
const H # Temperature Threshold def construct_rll(): # Invoked on abort
3 R :={} # Read Set 39 RLL := {}
W := {} # Write Set for w in W:
5 RLL := {} # Retrospective Lock List -
CLL := {} # Current Lock List 4 RLL.add(v, W-mode)
7 for r in R:
def read(t: Record): 43 if r not in RLL:
9 if temp(t) >= H or t in RLL: if temp(r) >= H or r failed verificationm:
lock(t, max(preferred mode in RLL, R-mode)) 45 RLL.add(r, R-mode)
11 R.add(t, t.TID) RLL.sort()
Read t 47
13 def commit():
def read_write(t: Record): 49 W.sort()
15 if temp(t) >= H or t in RLL: for w in W:
lock(t, W-mode) 51 lock(w, W-mode)
17 R.add(t, t.TID) for r in R:
Read t .
19 Construct log in private buffer 53 if r.observed_tid not equal r.tid:
V.add(t, log) temp(r) .hotter() # See Section 3.2
21 # Blind-write, same as in 0CC 35 abort
Committed
23 def lock(t: Record, m: Mode): 57 Determine TID and apply/publish W # Silo/FOEDUS protocol
if CLL already has t in mode m or stronger: CLL.unlock_all()
25 return 59 RLL, CLL, R, W := {}
violations := {l € CLL,l.mode # null,l > t}
27 if too many violations: 61 def on_abort():
alternative_lock(t, m) # See Section 4 CLL.unlock_all()
29 return or abort 63 if user will retry the transaction:
elif violations not empty: construct_r1l()
31 # Not in canonical mode. Restore. 65 else -
CLL.unlock({violations}) RLL := {}

33
Unconditional lock in canonical mode. 67 CLL, R, W := {}

35 CLL.unconditional_lock({l € RLL,l < t})

CLL.unconditional_lock(t, m)

MOCC Queuing Lock

A scalable, queue-based reader-writer lock with flexible interfaces and

cancellation support.
Lock word: I nreaders: # of readers [next_writer |tail: pointer
Requesters: |le—le RL “Je—>]< R2 L. T

QueueNode {
type : enum { Reader, Writer }
Py + pointer to pr‘edecessor} Interact with predecessor
granted: bool
busy : bool |)
stype : enum { None, Reader, Writer } ”f”a&
status : enum { Waiting, Granted, Leaving } [“'"
next : pointer to successor successor

}

Figure 4: MQL data structures. Requesters form a doubly-
linked list of gnodes to handle cancellation.

MOCC Queuing Lock - Supporting Readers/Writers

Fair variant of the reader-writer MCS lock

A requester (reader or writer) R brings a gnode and joins the queue using the
wait-free doorway by using an atomic-swap (XCHG) instruction to install pointer to
point to its gnode on lock.tail. XCHG will return a pointer to the predecessor P.

If P conflicts with R, R must wait for its predecessor to wake it up.

If P and R are both readers, R can enter the critical section if the lock is free or P
is also a reader and is holding the lock

Table 1: Using MQL in MOCC.

Mode Description Use in MOCC

Read/- Allows concurrent read- | All cases

Write ers. Write is exclusive.

Uncond- | Indefinitely wait until ac- | Canonical mode.

itional quisition.

Try Instantaneously gives up. | Non-canonical mode.
Does not leave gnode. Record access.

Asynch- | Leaves gnode for later | Non-canonical mode.

ronous check. Allows multiple | Record access and pre-

requests in parallel.

commit (write set).

Evaluation

Set up:

Table 2: Hardware for Experiments.

HP Model EB&40 Z.820 DL580 | GryphonHawk
Sockets 1 2 4 16
Cores (w/HT) 24) | 16 (32) | 60 (120) 288 (576)
CPU [GHZz] 1.90 3.40 2.80 2.50

DRAM DDR3 DDR4

Evaluation-cont.

CC schemes:
e MOCC/OCC

e PCC/Dreadlock/WaitDie/BlindDie

e Orthrus (A recent proposal separates CC and transaction worker threads for
high contention scenarios)

e ERMIA (MVCC)

Evaluation-cont.

Workloads:

o TPC-C
o Widely used OLTP benchmark

o Six tables and five transactions generate moderate read-write conflicts

e YCSB

o One table and simple, short transactions

Evaluation-cont.

TPC-C Low Contention, Low
. Table 3: TPC-C throughput (low contention, low conflict) on
Conflict GryphonHawk. MOCC behaves like OCC. PCC has a moder-
ate overhead for read locks. ERMIA is slower due to frequent
Low contention: some read-write and costly interthread communication.

conflicts. Scheme | Throughput [MTPS+Stdev] | Abort Ratio
MOCC 16.9+0.13 0.12%

MOCC: temperature statistics of FOEDUS 16.9+0.14 0.12%
PCC 9.1+£0.37 0.07%

almost all data pages are below ERMIA 30404 0.01%

the threshold, no read locks

ERMIA performs lowest due to
its centralized design

Evaluation-cont.

YCSB High Contention, No Conflict - Fo”égﬁg o Ortl;fucs o Drgi‘ﬁl;’f,{‘ o
100 ['
Pessimistic approaches, are slower E U/
than MOCC/FOEDUS because read glo
locks and severe physical contention. &' 7 =~ ¢ .
g Lhe e : .
Orthrus scales better than PCC, butit &
still needs frequent interthread 0.1 2 (1) 16(2) 604 288 (16)

: . # CPU Cores (# Sockets)
communication.

Figure 6: Throughput of a read-only YCSB workload with

Ermia‘s centralized thread reg istration high contention and no conflict on four machines with different
scales. MOCC adds no overhead to FOEDUS (OCC), perform-

becomes a major bottleneck. ing orders of magnitude faster than the other CC schemes.

High Contention, High Conflict YCSB

Vary the amount of read-modify-operation
from 0-10

FOEDUS's throughput significantly drops due
to massive aborts.

Pessimistic approaches’ performance still
drops due to aborts caused by deadlocks

MOCC dramatically reduces aborts without
adding noticeable overhead.

- MOCC e Dreadlock =
e FOEDUS —= ERMIA ;
E PCC = WaitDie 4
= Orthrus BlindDie —+— -
=9
= -
% bt %8 e o o o o 3
R = L N
a0)] A - = = = 1
8 B S S —a—3
>.‘ 1 1 1 1
2 4 6 8 10
Writes in YCSB Transaction
1
0.8
_O
% 06
[« 4
=
2 04+
<
0.2

o

2 4 6 8 10
Writes in YCSB Transaction

Figure 7: Read-write YCSB on GryphonHawk with high con-
tention and/or high conflict. MOCC achieves dramatically

lower abort ratio than OCC and even PCC, while maintaining
robust and the highest throughput for all cases.

Multi-table, shifting workloads

Two table experiment: First table contains
one record, second table contains one million

Shifting workload: Dynamically switches the
nature of the small table every 0.1 second.

Throughput and abort ratio of MOCC over
time with different temperature thresholds

H=0, significantly (24x) slower due to read
locks like pessimistic schemes

Lower thresholds result in quicker learning
and abort ratio drops quickly while large
thresholds are unstable.

an
Il
o

H=4 — H=8 H=10 — H=20 —

VWA T v

—
o
~

IE]

-
o
[22]

p—
o
w

Throughput

{
t

. 05 06
Elapsed Time [sec]

1B ' 1Hne h

o
»

S
a

Abort Ratio

o
N

0.3 04 05 0.6 0.7 0.8
Elapsed Time [sec]

Figure 8: Throughput (top) and abort ratio (bottom) of the
multi-table, shifting workload on GryphonHawk. The work-
load changes its access pattern on a contended table every 0.1
second. Larger thresholds take longer to learn new hot spots.

Long Scan Workloads

Every transaction reads one Table 4: Long Scan Workload on GryphonHawk.
record in the small table, and Scheme | Throughput [KTPS+Stdev] | Abort Ratio
scans 1000 record in the MOCC 199.613.1 0.4%
FOEDUS 10.54+0.0 99.55%
larger t.able, then updates the PCC CTRES 3%
record in the small table. Thomasian 20.8+15 50.1%

MOCC performs an order of
magnitude better than all

others because of its
temperature statistics

Conclusion
e MOCC keeps OCC'’s low overhead in low contention workloads

e MOCC’s selective locking achieves high scalability in high contention, low
conflict workloads.

e MOCC with MQL achieves significantly lower abort ratio and higher
performance than both OCC and pessimistic CC in high contention, high
conflict workloads

e MOCC can autonomously and quickly adjust itself in more realistic,
dynamically shifting workloads on multiple tables with different nature

e MOCC is especially beneficial for long running transactions (scan) with high
conflict operations

Thank Youl!

