SILO: SPEEDY TRANSACTIONS
IN MULTICORE IN-MEMORY

DATABASES

Stephen Tu, Wenting Zheng, Eddie Kohler', Barbara Liskov, Samuel Madden

Presenter : Akshada Kulkarni

Acknowledgement : Author's slides are used with some additions/
modifications

TABLE OF CONTENT

= Introduction
= Design
= Evaluation

= Conclusion

INTRODUCTION

MULTICORES T0 THE RESCUE?

10M
M
6M
4M

M

01 8 16 24 32

Worker fhreads

Throughput (txns/sec)

txn commit ()

{
// prepare commit
/][]
commit_tid = atomic_fetch_and_add(&global_tid);
// quickly serialize transactions a la Hekaton
}

SIL0: TRANSACTIONS FOR MULTICORES

= Near linear scalability on popular database benchmarks.

= uses minimal-contention serializable and scalable commit
protocol.

= achieves roughly 700,000 transactions(OLTP) per second on the
standard TPCC benchmark on a single 32-core machine, i.e.

about 22,000 transactions per second per core[4].

SECRET SAUCE

= A scalable and serializable transaction commit protocol.

= Shared memory contention only occurs when transactions conflict.

= OCC maintains local read and write sets and writes only at
commit time after validation.

= Scalability achieved by eliminating unnecessary contentions

= Recovery is possible using a form of epoch based group
commit

DESIGN

EPOCHS

= Divide time into epochs.
= A single thread advances the current epoch.

= Use epoch numbers as recovery boundaries.

= Reduces non data driven shared writes to happening very
infrequently.

= Serialization point is now a memory read of the epoch number!

TRANSACTION IDENTIFIERS (TIDS)

= Each record contains TID of its last writer.

= TID is broken into three pieces:

Status bits | Sequence number Epoch number
0 63
= Assign TID at commit time (after reads).

= Take the smallest number in the current epoch larger than all record
TIDs observed in the transaction.

PRE-COMMIT EXECUTION

= Idea: proceed as if records will not be modified — check
otherwise at commit time.

= Maintain read set : records that are read with TIDs

= Maintain write set : new state of the record (not the previous
TID)

= (Standard optimistic concurrency control)

COMMIT PROTOCOL

= Phase 1:Lock all records in the write set by acquiring the
record’s lock bit.
= Read the current epoch. (Fences are required)

= Phase 2: Validate records in read set.

= Abort if record’s TID changed or lock is held (by another
transaction).

= Phase 3: Pick TID and perform writes.
= Use the epoch recorded in Phase 1 for the TID.

RETURNING RESULTS

= Say Tl commits with a TID in epoch E.

= Cannot return T1 to client until all transactions in epochs < E
are on disk.

CORRECTNESS

= Locks all written records before validating TIDs of read records

= Treats locked records as dirty and aborts on encountering
them

= Fences ensure that TID validation checks all concurrent updates
= Epoch number is serialization point.

= One property we require is that epoch differences agree with
dependencies.
= T2 reads T1’s write 2> T2’s epoch =2 T1’s.

= T2 overwrites a key Tl read - T2’s epoch = T1’s.

. WRITEALILR-RERAD, EXRMPLE

T1: T1() { T2() {
tmp = Read(A); tmp = Read(A); Write(A, 2);
WriteLocal(B, tmp); Write(B, tmp); }
}
T2’s epoch 2 T1’s epoch
o)
£
E|
T2:

WriteLocal(A, 2);

B - A
A happens-before B

! ©

STORING THE DATA

= A commit protocol requires a data structure to provide access

to records.

= We use Masstree, a fast non-transactional B-tree for multicores.

Layer 0
indexed by
key bytes 07

Layer 1
indexed by
key bytes 8-15

N [
© » interior nodes
Y\ |
‘Li‘ .. border nodes
\ y { 1
. values
J N
AN 2%
F N
/N

EVALUATION

SETUP

= 32 core machine:
= 2.1 GHz, L1 32KB, L.2 256KB, .3 shared 24MB
= 256GB RAM
» Three Fusion IO ioDrive2 drives, six 7200RPM disks in RAID-5
= Linux 3.2.0

= No networked clients.

WORKLOADS

= TPC-C: online retail store benchmark.
= Large transactions (e.g. delivery is ~100 reads + ~100 writes).
= Average log record length is ~1KB.
= All loggers combined writing ~1GB/sec .

= YCSB-like: key/value workload.
= Small transactions.
= 80/20 read/read-modify-write.
= 100 byte records.
= Uniform key distribution.

SCALABILITY OF SILO ON TPC C

0.9M
0.8M |- — " Silo+tmpfs
07M | ~— Silo

0.6M
0.5M
0.4M
0.3M
0.2M
0.1M

0 ! ! !
1 8 16 24 32

Worker threads

“1+1/0
(scalability

bottleneck)

l|l|

Throughput (txns/sec)

* [/0 slightly limits scalability, protocol does not.
* Note: Numbers several times faster than a leading commercial
system + numbers better than those in paper.

COST OF TRANSACTIONS ON YCS

18M

16M Key-Value
14M F+ MemSilo
12M ~° 7" MemSilo+GlobalTID

10M
&M
6M
4AM
2M

0 | | |
1 8 16 24 32

Worker threads

—+ Protocol (~4%)

— Global TID (~45%)

.."|==
L N R SR

Throughput (txns/sec)

* Key-Value: Masstree (no multi-key transactions).
» Transactional commits are inexpensive.

* MemSilo+GlobalTID: A single compare-and-swap added to commit.

©

