
Stephen Tu, Wenting Zheng, Eddie Kohler†, Barbara Liskov, Samuel Madden

Presenter : Akshada Kulkarni

Acknowledgement : Author’s slides are used with some additions/
modifications

1

§ Introduction

§ Design

§ Evaluation

§ Conclusion

2

3

4

1 4 8 12 16
Worker threads

0

2M

4M

6M

8M

10M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)

1 8 16 24 32
Worker threads

0

2M

4M

6M

8M

10M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)

txn_commit()
{

// prepare commit
// […]
commit_tid = atomic_fetch_and_add(&global_tid);
// quickly serialize transactions a la Hekaton

}

§ Near linear scalability on popular database benchmarks.

§ uses minimal-contention serializable and scalable commit
protocol.

§ achieves roughly 700,000 transactions(OLTP) per second on the
standard TPCC benchmark on a single 32-core machine, i.e.
about 22,000 transactions per second per core[4].

5

§ A scalable and serializable transaction commit protocol.
§ Shared memory contention only occurs when transactions conflict.

§ OCC maintains local read and write sets and writes only at
commit time after validation.

§ Scalability achieved by eliminating unnecessary contentions

§ Recovery is possible using a form of epoch based group
commit

6

7

§ Divide time into epochs.
§ A single thread advances the current epoch.

§ Use epoch numbers as recovery boundaries.

§ Reduces non data driven shared writes to happening very
infrequently.

§ Serialization point is now a memory read of the epoch number!

8

§ Each record contains TID of its last writer.

§ TID is broken into three pieces:

§ Assign TID at commit time (after reads).
§ Take the smallest number in the current epoch larger than all record

TIDs observed in the transaction.

9

Status bits Sequence number Epoch number
0 63

§ Idea: proceed as if records will not be modified – check
otherwise at commit time.

§ Maintain read set : records that are read with TIDs

§ Maintain write set : new state of the record (not the previous
TID)

§ (Standard optimistic concurrency control)

10

§ Phase 1: Lock all records in the write set by acquiring the
record’s lock bit.
§ Read the current epoch. (Fences are required)

§ Phase 2: Validate records in read set.
§ Abort if record’s TID changed or lock is held (by another

transaction).

§ Phase 3: Pick TID and perform writes.
§ Use the epoch recorded in Phase 1 for the TID.

11

§ Say T1 commits with a TID in epoch E.

§ Cannot return T1 to client until all transactions in epochs ≤ E
are on disk.

12

§ Locks all written records before validating TIDs of read records

§ Treats locked records as dirty and aborts on encountering
them

§ Fences ensure that TID validation checks all concurrent updates

§ Epoch number is serialization point.

§ One property we require is that epoch differences agree with
dependencies.
§ T2 reads T1’s write à T2’s epoch ≥ T1’s.
§ T2 overwrites a key T1 read à T2’s epoch ≥ T1’s.

13

§ Say T2 overwrites a key T1 reads.

14

T2:
WriteLocal(A, 2);

Lock(A);
e = Global_Epoch;

t = GenerateTID(e);

WriteAndUnlock(A, t);

T1:
tmp = Read(A);
WriteLocal(B, tmp);

Lock(B);
e = Global_Epoch;

Validate(A); // passes
t = GenerateTID(e);

WriteAndUnlock(B, t);

T2’s epoch ≥ T1’s epoch

Ti
m

e

T2() {
Write(A, 2);

}

T1() {
tmp = Read(A);
Write(B, tmp);

}

B A
A happens-before B

§ A commit protocol requires a data structure to provide access
to records.

§ We use Masstree, a fast non-transactional B-tree for multicores.

15

...

...

...

...!"#$%&'

()*$+$*&,#

-$#&,#.$/&'01

!"#$%&2

()*$+$*&,#

-$#&,#.$/&3024

().$%(5%&)5*$/

,5%*$%&)5*$/

6"78$/

...

...

...

9

Figure 1. Masstree structure: layers of B+-trees form a trie.

Put another way, a Masstree comprises one or more layers
of B+-trees, where each layer is indexed by a different 8-byte
slice of key. Figure 1 shows an example. The trie’s single
root tree, layer 0, is indexed by the slice comprising key
bytes 0–7, and holds all keys up to 8 bytes long. Trees in
layer 1, the next deeper layer, are indexed by bytes 8–15;
trees in layer 2 by bytes 16–23; and so forth.

Each tree contains at least one border node and zero or
more interior nodes. Border nodes resemble leaf nodes in
conventional B+-trees, but where leaf nodes store only keys
and values, Masstree border nodes can also store pointers to
deeper trie layers.

Keys are generally stored as close to the root as possible,
subject to three invariants. (1) Keys shorter than 8h+8 bytes
are stored at layer  h. (2) Any keys stored in the same layer-
h tree have the same 8h-byte prefix. (3) When two keys share
a prefix, they are stored at least as deep as the shared prefix.
That is, if two keys longer than 8h bytes have the same 8h-
byte prefix, then they are stored at layer � h.

Masstree creates layers as needed (as is usual for tries).
Key insertion prefers to use existing trees; new trees are cre-
ated only when insertion would otherwise violate an invari-
ant. Key removal deletes completely empty trees but does
not otherwise rearrange keys. For example, if t begins as an
empty Masstree:

1. t.put(“01234567AB”) stores key “01234567AB” in the
root layer. The relevant key slice, “01234567”, is stored
separately from the 2-byte suffix “AB”. A get for this key
first searches for the slice, then compares the suffix.

2. t.put(“01234567XY”): Since this key shares an 8-byte
prefix with an existing key, Masstree must create a new
layer. The values for “01234567AB” and “01234567XY”
are stored, under slices “AB” and “XY”, in a freshly
allocated B+-tree border node. This node then replaces
the “01234567AB” entry in the root layer. Concurrent
gets observe either the old state (with “01234567AB”) or
the new layer, so the “01234567AB” key remains visible
throughout the operation.

struct interior_node: struct border_node:
uint32_t version; uint32_t version;
uint8_t nkeys; uint8_t nremoved;
uint64_t keyslice[15]; uint8_t keylen[15];
node* child[16]; uint64_t permutation;
interior_node* parent; uint64_t keyslice[15];

link_or_value lv[15];
border_node* next;

union link_or_value: border_node* prev;
node* next_layer; interior_node* parent;
[opaque] value; keysuffix_t keysuffixes;

Figure 2. Masstree node structures.

3. t.remove(“01234567XY”) traverses through the root layer
to the layer-1 B+-tree, where it deletes key “XY”. The
“AB” key remains in the layer-1 B+-tree.

Balance A Masstree’s shape depends on its key distribu-
tion. For example, 1000 keys that share a 64-byte prefix
generate at least 8 layers; without the prefix they would fit
comfortably in one layer. Despite this, Masstrees have the
same query complexity as B-trees. Given n keys of maxi-
mum length `, query operations on a B-tree examine O(logn)
nodes and make O(logn) key comparisons; but since each
key has length O(`), the total comparison cost is O(` logn).
A Masstree will make O(logn) comparisons in each of O(`)
layers, but each comparison considers fixed-size key slices,
for the same total cost of O(` logn). When keys have long
common prefixes, Masstree outperforms conventional bal-
anced trees, performing O(`+ logn) comparisons per query
(` for the prefix plus logn for the suffix). However, Mass-
tree’s range queries have higher worst-case complexity than
in a B+-tree, since they must traverse multiple layers of tree.

Partial-key B-trees [8] can avoid some key comparisons
while preserving true balance. However, unlike these trees,
Masstree bounds the number of non-node memory refer-
ences required to find a key to at most one per lookup. Mass-
tree lookups, which focus on 8-byte key slice comparisons,
are also easy to code efficiently. Though Masstree can use
more memory on some key distributions, since its nodes are
relatively wide, it outperformed our pkB-tree implementa-
tion on several benchmarks by 20% or more.

4.2 Layout
Figure 2 defines Masstree’s node structures. At heart, Mass-
tree’s interior and border nodes are internal and leaf nodes of
a B+-tree with width 15. Border nodes are linked to facilitate
remove and getrange. The version, nremoved, and permuta-
tion fields are used during concurrent updates and described
below; we now briefly mention other features.

The keyslice variables store 8-byte key slices as 64-bit
integers, byte-swapped if necessary so that native less-than
comparisons provide the same results as lexicographic string
comparison. This was the most valuable of our coding tricks,

16

§ 32 core machine:
§ 2.1 GHz, L1 32KB, L2 256KB, L3 shared 24MB
§ 256GB RAM
§ Three Fusion IO ioDrive2 drives, six 7200RPM disks in RAID-5
§ Linux 3.2.0

§ No networked clients.

17

§ TPC-C: online retail store benchmark.
§ Large transactions (e.g. delivery is ~100 reads + ~100 writes).
§ Average log record length is ~1KB.
§ All loggers combined writing ~1GB/sec .

§ YCSB-like: key/value workload.
§ Small transactions.
§ 80/20 read/read-modify-write.
§ 100 byte records.
§ Uniform key distribution.

18

1 8 16 24 32
Worker threads

0
0.1M
0.2M
0.3M
0.4M
0.5M
0.6M
0.7M
0.8M
0.9M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
) Silo+tmpfs

Silo

19

• I/O slightly limits scalability, protocol does not.
• Note: Numbers several times faster than a leading commercial

system + numbers better than those in paper.

I/O
(scalability
bottleneck)

20

1 8 16 24 32
Worker threads

0
2M
4M
6M
8M

10M
12M
14M
16M
18M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
) Key-Value

MemSilo
MemSilo+GlobalTID

• Key-Value: Masstree (no multi-key transactions).
• Transactional commits are inexpensive.

• MemSilo+GlobalTID: A single compare-and-swap added to commit.

Protocol (~4%)

Global TID (~45%)

