Beanstalk
Milestone 2

Terry Yang, Annie Lin,
Hiroka Tamura, Kaelan Mikowicz

Beanstalk - Share your adventure
e Bring people together around trendy
spots and hidden gems!

Outline

Frontend: Ul / UX Design
Database Schema

Backend: AP| Endpoints and
Queries

Live Demo

Frontend: App Personality
Ul /7 UX Design App Persona

User Experience Design

User Interface Design

App Personality: Brand Traits

-> Afriendly, modern and accessible app
Simple but not unsophisticated
Trustworthy but not dull
Kind but not passive
Hip but not exclusive

Adventurous but not aggressive

App Personality: Voice

-> Interacts with users in a helpful yet playful tone. Upbeat, sweet and feminine.

-> Everyuseris adaring adventurer: the app acts as an assistant/sidekick in their
journeys.

-> Slightly more formal than conversational, but still human.

Personality Map

UNFRIENDLY

DOMINANT

SUBMISSIVE

AT1AN3 44

App Personality: Visual Lexicons

-> Color: White with soft emerald-green accents.

€ Flat colors and little textures that parallel app’s personality of being
simple/non-aggressive.

€ Greenthatiskind to the eyes as well as refined and functional.
-> Text: Sans-Serif font that portrays the app’s feminine tone; clean and professional.

-> Reduce Clutter: Clean interface that embraces the white space and effectively leads
users’ eyes in navigation.

User Persona

Moll

y (21)

Livesin LA

Loves LA

Loves avocado toast and pretty
lattes

Always looking for the next
instagrammable spot to show her
friends

Alan (25)

° A big travel nut
° A major foodie

Cathy (18)

° Fancy pants
° Likes to boast her riches

Vishal (30)
° New Yorker who loves a
good drink
° A little bit of a party
animal

User Persona: Molly

Goals: “Is it picture-worthy?”

Motivation e Wantsto find the best food in a certain area.

| e Wants others to see what she has been up to and where she has
_'”cem've traveled.
Fear e |[scurious about her friend's lives.
[
Growth .
e Frustrations:

Power e Not being able to find cool spots her friends are going to
e Not knowing the newest trendy spots near by
e Tryingto planfor her travels but not knowing where to go

Social

Ul Design: Low Fidelity

Ul Design: High Fidelity

beanstalk

beanstalk

Username

Password

No account? Sign Up.

Home

beanstalk

g

username

username

gt

ActivityFeed

&>

beanstalk

*Like, Comment
Notifications*

Profile SignUp
beanstalk LL
20 photos
M o I I y 789 followers
136 following
Ny
v
e 2
10
beanstalk
Username
Email
Password

N
[01)

Map
beanstalk LTJ
Molly 789 fojowers
136 following
B8 (%]
° i L

UX Design

Usability
e Simple transitions
e Minimalistic experience
e Fulfills goal of users

Recognizable
e Familiar Icons

Visibility of Feedback

beanstalk

SignUp

ActivityFeed

e Users will beinformed of what’s going on in the app

Profile

Database ER Diagram
SChema Database Schema

Beanstalk o o
ER Diagram ° @ 0 . User Tag .u
Middle . o
Hashtag
First Last
{me o { Like

@ User

profile picture

Follower Followed

Location o Comment Like

Account

private / public
notifications
on/off

password

Beanstalk

Database Schema

Tagged Photo

tagged_UID: INTEGER
PID: INTEGER
FOREIGN KEY (tagged_UID) REFERENCES User(UID)|

O<] PRIMARY KEY (PID)

Comment Like

commentiD: INTEGER

UID: INTEGER

timestamp: DATE

FOREIGN KEY UID REFERENCES User(UID)

FOREIGN KEY commentiD REFERENCES Comment(commentID)

PRIMARY KEY (commentiD, UID)

ons
=
REQUEST STATE TYPE Follows
pending UID: INTEGER
accepted followingUID: INTEGER
declined timestamp: DATE
request: REQUEST_STATE
FOREIGN KEY (UID) REFERENCES User(UID)
FOREIGN KEY (followingUID) REFERENCES User(UID) Comment
PRIMARY KEY (UID, followingUID) commentiD: INTEGER
UID: INTEGER
PID: INTEGER
comment: VARCHAR(300)
o< timestamp: DATE
FOREIGN KEY PID REFERENCES Post(PID)
User FOREIGN KEY UID REFERENCES User(UID)
S PRIMARY KEY (commentiD)
UID: INTEGER
firstName: VARCHAR(20) g
lastName: VARCHAR(20)
Email: VARCHAR(30) |
username: VARCHAR(15) T
password: VARCHAR(64)
createdAt: DATE
updatedAt: DATE 1
privacy: BOOLEAN
profilePic: BLOB Post Hashtag
UNIQUE (UID), UNIQUE (Email), i
UNIQUE (username) UID: INTEGER PID: INTEGER
PRIMARY KEY (UID) PID: INTEGER hashtag:varchar(30)
timePosted: DATE kN 4 PRIMARY KEY(PID)
image: BLOB T Ty UNIQUE (PID, hashtag)
LID: INTEGER
caption: VARCHAR(300)
FOREIGN KEY UID REFERENCES User(UID)
FOREIGN KEY LID REFERENCES Location(LID|
PRIMARY KEY (PID) i B
- Location
Like
LID: INTEGER
PID: INTEGER PID: INTEGER
gps: POINT <postgresql type>

UID: INTEGER
O< timestamp: DATE

PRIMARY KEY (PID, UID)

city: VARCHAR (30)
country: VARCHAR(30)
FOREIGN KEY (PID) REFERENCES Post(PID)

Backend: API AP| documentation

EndeintS and Database Queries
Queries

Backend

-> Last time: create, read, update and delete (CRUD) functionality for users relation

=> Current usage: developer backdoor for root access to database through HTTP

€ GET - /api/User - Retrieve all users
€ PUT -/api/User - Update an user
€ DELETE -/api/User - Delete an user

Backend

- New API endpoints for user registration and login (returns authentication token upon
success)

€ POST - /api/User/register - Register with username, email, first name, last name,
and password

€ POST - /api/User/login - Login with username and password

Backend

-> New API endpoints for user profiles (requires an authentication token to access)
€ Tokenis JWT HMAC secret encoded. Sent as “Authorization” header

-> Own user profile (decoded authentication token matches the <username>)
€ GET - /api/User/profile/<username> - Get privileged info for the user’s profile
€ PUT - /api/User/profile/<username> - Update fields for the user’s profile

-> Other user profile (decoded authentication token does not match the <username>)

€ GET - /api/User/profile/<username> - Get limited info for the user’s profile
depending on privacy settings

User Registration - POST

INSERT INTO "user" (username, email, password_hash, first_name,
last_name, privacy, created_at, updated_at, profile_pic)

VALUES (%(username)s, %(email)s, %(password_hash)s, %(first_name)s,
%(last_name)s, %(privacy)s, %(created_at)s, %(updated_at)s, %(profile_pic)s)
RETURNING "user".id

User Login - POST

SELECT "user".id, “user”.password_hash
FROM "user"

WHERE "user".username = %(username_1)s
LIMIT 1

User Profile - GET

SELECT "user".id, "user".username, "user".email, "user" .first_name,
"user".last_name, "user".privacy "user".profile_pic

FROM "user"

WHERE "user".id = %(id_1)s

LIMIT 1

User Profile - PUT

UPDATE "user"
SET updated_at=%(updated_at)s, <arg=value>
WHERE "user".id = %(user _id)s

Counting Followers

Following me:

SELECT COUNT(followingUID)
FROM “Follows”

WHERE UID = %(user _id)

I’m Following:

SELECT COUNT(UID)

FROM “Follows”

WHERE followingUID = %(user _id)

Counting Likes

Comments:

SELECT COUNT(UID)
FROM “Comment_Like”
WHERE commentID = %(comment_id)

Posts:

SELECT COUNT(UID)
FROM “Like”
WHERE PID = %(post_id)

Relational Queries

Getting all comments for a post:

SELECT “Comment”.commentID, “Comment”. comment, “Post”.PID,
FROM “Post”

JOIN “Comment” ON “Comment”.PID = “Post”.PID

WHERE “Post”.PID = %(post_id)

Relational Queries

Get posts around a gps point using PostGIS:

SELECT “Post”.PID, “Location”.LID

FROM “Location”

JOIN “Post” ON “Location”.PID = “Post”.PID

WHERE ST_Distance_Sphere(“Location”.gps, ST_Make_Point(%lon, %lat)) <
10 * 1000

Live Demo Registration

User Login
Authentication

User Profile Editing

Project Goals

Questions?

