
Beanstalk
Milestone 3

Terry Yang, Annie Lin,
Hiroka Tamura, Kaelan Mikowicz

Beanstalk - Share your adventure
● Bring people together around trendy

spots and hidden gems!

Outline

Creating and Retrieving Posts

Likes and Comments

Username Search

Viewing and Following Users

Activity Feed

Extra Features

Live Demo

Creating a Post: Frontend

1. Click icon on Activity Feed to perform upload

2. Click “Choose Image” to pick an image from your

Camera Roll

a. Add caption, hashtag, location

3. Click “Submit” post

a. Creates a form with Post information

b. Performs a POST request to Post endpoint

Workflow

Retrieving a Post: Frontend
 4. Display Posts on

a. User Profile

i. After submitting a post

ii. Load profile

iii. Perform GET request to profile endpoint

b. Activity Feed

Creating & Retrieving a Post: Backend

➔ Post Endpoint - /api/Post

◆ POST - Creates a new post for auth user

➔ Post Item Endpoint - /api/Post/<pid>

◆ GET - Retrieves the post contents, comments and likes for post with <pid>

◆ PUT - Updates the caption for post with <pid> if post belongs to auth user

◆ DELETE - Removes the post with <pid> if post belongs to auth user

Likes: Frontend

➔ Heart Icon to elicit a like action

➔ User is able to

◆ Like a post

◆ Unlike a post

➔ Once user clicks to like/unlike

◆ Perform POST or DELETE to like endpoint

◆ Render an update colors & numbers to inform users of their action

Likes: Backend

➔ Post Like Endpoint - /api/Post/<pid>/like

◆ POST - Lets auth user like the post with <pid>

◆ DELETE - Lets auth user unlike the post with <pid>

Likes: Queries
Comments:

SELECT COUNT(UID)
FROM “Comment_Like”
WHERE commentID = %(comment_id)

Posts:

SELECT COUNT(UID)
FROM “Like”
WHERE PID = %(post_id)

Comments: Frontend

➔ Users will be able to add comments when they navigate to one

Post

➔ Once submitting a comment

◆ Perform POST request to Post/<pid>/comment endpoint

◆ Store comments in an array

◆ Render all previous comments and recently commented

Comments: Backend

➔ Comment Endpoint - /api/Post/<pid>/comment

◆ POST - Creates a new comment for auth user on post with <pid>

➔ Comment Item Endpoint - /api/Post/<pid>/comment/<comment_id>

◆ PUT - Updates the comment with <comment_id> for post with <pid> if

comment belongs to auth user

◆ DELETE - Removes comment with <comment_id> for post with <pid> if

comment belongs to auth user

Comments: Queries

Getting all comments for a post:

SELECT “Comment”.commentID, “Comment”. comment, “Post”.PID,
FROM “Post”
JOIN “Comment” ON “Comment”.PID = “Post”.PID
WHERE “Post”.PID = %(post_id)

Username Search: Frontend

1. Users will locate Search Bar through the Activity Feed page

a. Send a GET request upon changing the search text

2. User will type desired username

3. Search Bar renders a page with usernames that match the

search queries

4. User may click on result to navigate to desired profile

a. Pass in username prop when navigating to profile

Workflow

Username Search: Backend

➔ Username Search Endpoint - /api/User/search?query=<query_string>

◆ GET - Retrieves a list of likely usernames for <query_string>

Username Search: Queries

Retrieving likely usernames:

SELECT “User”.username,
FROM “User”
WHERE “User”.username LIKE “query_string%”

Viewing and Following Users: Frontend
Viewing

➔ Usernames will navigate to a User’s Profile

◆ Pass in a username prop

➔ Perform GET request to a specific username

Following

➔ Each profile that isn’t yours will have a follow button

➔ Upon Follow or Unfollow

◆ Perform a POST or DELETE request to the follow endpoint

Viewing Users: Backend

➔ User Profile Endpoint - /api/User/profile/<username>

◆ GET - Retrieves User's number of photos/followers/following, posts, username

and profile picture

◆ PUT - If owner of profile, updates profile picture and other changeable fields

like first name and last name

Following Users: Backend

➔ Follow Endpoint - /api/User/follow/<username>

◆ POST - Lets the auth user follow the user specified by <username>. Adds an

entry into the Follow table. Updates the FollowAggregation table.

◆ DELETE - Lets the auth user unfollow the user specified by <username>.

Deletes an entry from the Follow table. Updates the FollowAggregation table.

Denormalization
id followers following

1 2 0

3 199 200

id username followers following

1 annie 2 0

3 terry 199 200

Following Aggregation to be
part of Users table

Activity Feed: Frontend

Workflow

1. Home tab will display the Activity Feed

2. Upon logging in:

a. Perform GET request to the User’s Home endpoint

3. What we render:

a. All posts from users you follow

b. Posts in reverse chronological order

Activity Feed: Backend

➔ Activity Feed Endpoint - /api/User/Home

◆ GET - Retrieves a list of posts from users followed by the auth user plus posts by

the auth user. For each post, returns the post image, username of poster,

number of likes on post, and whether the auth user has liked the post

Activity Feed: Queries

Naive method:

SELECT post.id, post.caption, post.photo, user.username, like_exists.pid, COUNT(post_like.uid)
FROM post
JOIN user ON user.id = post.uid
LEFT OUTER JOIN post_like ON post_like.pid = post.id
JOIN follow ON follow.follower_uid = auth_user.id AND follow.following_uid = user.id
LEFT OUTER JOIN (SELECT post_like.pid

FROM post_like
JOIN post ON post.pid = post_like.pid
WHERE post_like.uid = auth_user.id) AS like_exists

ON like_exists.pid = post.pid
GROUP BY post.id, post.caption, post.photo, user.username, like_exists.pid

Explain Query

Optimizations and Improvements

● Remove subquery just to get whether the current user is liking a post
○ Use a separate endpoint to speed up the initial loading

● Remove join to count post likes by aggregating it in post table

● Originally storing the entire image binary in database
○ Low bandwidth from database to server
○ Query returns array of full sized photo binaries, python ran out of memory
○ Photo is now a UUID to a folder hosted on backend

● Cache database results per user
○ Only refresh the cache based on time

Indexing

● Hash index on comment pid so that it is fast to retrieve all comments for a post

● Hash index on post_like uid so it is fast to check whether a user likes a post

● Hash index on comment_like so it is easy to check if a user likes a comment

Extra Features

➔ Profile Picture

➔ Editing a Post:

◆ Deletion

◆ Edit caption (in progress)

UI / UX Design Personality Implementation

Persona Simulation

Extras

App Personality: Voice

➔ Interacts with users in

a helpful yet playful

tone. Upbeat, sweet

and feminine.

➔ Every user is a daring

adventurer: the app

acts as an

assistant/sidekick in

their journeys.

User posts a picture: User edits profile info:

App Personality: Visual Lexicons

➔ Color: White with soft

emerald-green accents.

➔ Text: Sans-Serif font that

portrays the app’s feminine

tone; clean and professional.

User Persona: Molly

“Is it picture-worthy?”

Goals: Wants to be popular and show that she
lives a cool life as well as stalk others’.

 Molly (21)

● Lives in LA
● Loves LA
● Loves avocado toast and pretty

lattes
● Always looking for the next

instagrammable spot to show her
friends

Vishal (30)
● New Yorker who loves a

good drink
● A little bit of a party animal

Alex (25)
● A big travel nut
● A major foodie

Cathy (18)
● Fancy pants
● Likes to boast

her riches

User Persona

Extra UX components

KeyboardAvoidView:

Shifts the view by
either padding or
positioning so that
user is able to get a full
view when inputting
text.

RefreshControl:

Page reloads when the
user pulls the screen
downward to ensure
update visibility.

Extra UX components

Disabling Buttons:

Making it visually
apparent whether a
button can be clicked
or not. This can help
avoid double posting.

Extra UX components

Navigation by
username:

Allowing users to
easily navigate
between profiles with
a touch of a button at
the usernames on the
activity feed or posts.

Live Demo

Project Goals

Registration

User Login

Authentication

User Profile Editing

Questions?

