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°

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data

velocity.
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Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data

velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra
level of indirection in order to
Decouple Logical and Physical Locations of Records to
Reduce Index Maintenance
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Traditional Multi-version Indexing: Updating Records
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Indirection Indexing: Updating Records
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Analytical & Experimental Evaluations
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Indirection Time Complexity Analysis

Legend

K | Number of indexes

LB | LIDBlock size

M | Number of matching records

Method Type Imm. SSD Def. SSD Imm. HDD Def. HDD
Base Deletion 0 0 2+ K <1+K
Single-attr. update | 0 0 3+K <2+K
Insertion 0 0 1+ K <1+K
Search Unigq. 0 0 2 0
Search Mult. 0 0 1+ M 0
Indirection | Deletion 2 0 2 <3
Single-attr. update | 2 0 4 <3
Insertion 2+2K 2K/LB 1 <142K/LB
Search Uniq. 2 0 2 0
Search Mult. 1+ M 0 1+M 0
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Experimental Setting

m Hardware:

m (2 x 8-core) Intel(R) Xeon(R) CPU E7-4820 @ 2.00GHz, 32GB, 2 x HDD,
SSD Fusion-io

m Software:

m Database: IBM DB2 9.7

m Prototyped in a commercial proprietary database

m Prototyped in Apache Spark by UC Berkeley

m LIBGist v.1.0: Generalized Search Tree C++ Library by UC Berkeley (6K LOC)
(Predecessor of Generalized Search Tree (GiST) access method for PostgreSQL)

m LIBGist™ Prototype: Multi-version Generalized Search Tree C++ Library over
LIBGist supporting Indirection/LIDBlock/DeltaBlock (3K LOC)

m Data:

m TPC-H benchmark
m Microsoft Hekaton micro benchmark
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Indirection: Effect of Indexes in Operational Data Stores

TPC-H: all tables; Scale Factor: 20

06 Update (Base)

M -4 Update (Indirection)

Relative Execution Time

Number of Indexes

|
Substantially improving the update time ...
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Indirection: Effect of Indexes in Operational Data Stores

TPC-H: all tables; Scale Factor: 20
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... Consequently affording more indexes and significantly reducing the query time
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2VCC

Introducing Multi-version Concurrency Control
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2VCC

Generalized Concurrency Control: Volume Dimension

Observed Trends

In operational multi-version databases, there is a tremendous opportunity
to avoid clashes between readers (scanning a large volume of data) and
writers (frequent updates).
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Observed Trends

In operational multi-version databases, there is a tremendous opportunity
to avoid clashes between readers (scanning a large volume of data) and
writers (frequent updates).

Introducing a (latch-free) two-version concurrency control (2VCC) by
extending indirection mapping (i.e., central coordination mechanism) and
exploiting existing two-phase locking (2PL) in order to
Decouple Readers/Writers to Reduce Contention
(Pessimistic and Optimistic Concurrency Control Coexistence)
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2VCC

2V-Indirection Indexing: Updating Records
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Recap: Indirection technique for reducing index maintenance
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2V-Indirection Indexing: Updating Records
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Extending the indirection to committed/uncommitted records
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2VCC

2V-Indirection Indexing: Updating Records
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2VCC

Overview of Two-version Concurrency Control Protocol

v

Growing Phase:
Acquiring Locks

|
Two-phase locking (2PL) consisting of growing and shrinking phases
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2VCC

Overview of Two-version Concurrency Control Protocol

Growing Phase: Shrinking Phase:
Acquiring Locks Releasing Locks

|
Extending 2PL with certify phase
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Overview of Two-version Concurrency Control Protocol
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Releasing Locks
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Certify Phase:
Upgrading Locks

|
Exclusive locks held for shorter period (inherently optimistic)
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Overview of Two-version Concurrency Control Protocol
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Overview of Two-version Concurrency Control Protocol
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Shrinking Phase:
Releasing Locks

Growing Phase:
Acquiring Locks

Certify Phase:
Upgrading Locks

Relaxed exclusive locks to allow speculative reads (increased optimism)
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2VCC

Overview of Two-version Concurrency Control Protocol

Blocking
Lock Waits
(counter + queue)

Shrinking Phase:
Releasing Locks

Growing Phase:
Acquiring Locks

Certify Phase:
Upgrading Locks

|
Trade-offs between blocking (i.e., locks) vs. non-blocking (i.e., read counters)
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2VCC: Effect of Parallel Update Transactions

Update Only Workload; High Contention
4096
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256
i Single-version
64  Multi-version

Improvement ratio
16

Update Execution Time in seconds
Improvement ratio

1 8 16 24 32 64
Number of Parallel Transactions

__________________________________________________________________________________|
Substantial gain by reducing the read/write contention & using non-blocking operations
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2VCC: Effect of Parallel Update Transactions

Lock Statistics Comparison; High Contention
4096
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QueCC

Introducing Coordination-free Concurrency Control
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QueCC

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.
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Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.
Execution and Synchronization Decoupling
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Queue-oriented, Control-free Concurrency (QueCC)

Batching Client
Transactions

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution
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Queue-oriented, Control-free Concurrency (QueCC)
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(Pre-determined Priority)

2

Batching Client \;,
Transactions

Execution & Synchronization Decoupling: Deterministic priority-based planning
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Queue-oriented, Control-free Concurrency (QueCC)

Planning Threads
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Avoiding thread coordination & eliminating all execution-induced aborts
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Unifying OLTP and OLAP
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Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).
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Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)
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Storage Layout Conflict

Read Optimized

Row-based Storage (compressed, read-only pages) (o|ymnar storage

: — s
P
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I
Write Optimized — | | ‘

(uncompressed in-place updates)

|
Write-optimized (i.e., uncompressed & row-based) vs. read-optimized (i.e.,

compressed & column-based) layouts
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Lineage Mapping
(indirection layer, stable LID-to-RID mapping)

|
Physical Update Independence: De-coupling data & its updates

(reconstruction via in-page lineage tracking and lineage mapping)
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(indirection layer, stable LID-to-RID mapping)
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Lazy Update

Consolidation
(snapshot reconstruction via lineage
mapping & in-page tracking)
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In-page Lineage Tacking

Base Pages
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In-page Lineage Tacking

Remain Unchanged
(stable reference, anchored RIDs)

Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)
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Columnar Storage
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(spanning over a set of aligned columns)

Overview of the lineage-based storage architecture
(base pages and tail pages are handled identically at the storage layer)
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L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

i
o
o
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|

Base Pageé
(read-only)

Columnar Storage

|
Records are range-partitioned and compressed into a set of ready-only base pages

(accelerating analytical queries)
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L-Store: Detailed Design
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|
Recent updates for a range of records are clustered in their tails pages

(transforming costly point updates into an amortized analytical-like query)
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L-Store: Detailed Design
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L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

Pre-allocated Space

o)
N
)

/ Base Page;
Tail Pages (read-only)
(append-only)

N\

|
Recent updates are strictly appended, uncompressed in the pre-allocated space

(eliminating the read/write contention)
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L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)
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'
Achieving (at most) 2-hop access to the latest version of any record

(avoiding read performance deterioration for point queries)
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L-Store
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L-Store: Contention-free Merge
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(compressed, read-only pages)

) m — — O\
] /I ’ ‘ﬁ W
C - Id L
Write Optimized D D I I
essed, append-only updi; )
D I D I@ o Indirection Column
(uncompressed, in-place update)

Merge Queue
(tail pages to be merged)

I

I
[
[
[
J

Consecutive Set of
Committed Updates

[
—

[
[
[

[

J

Contention-free merging of only stable data: read-only and committed data
(no need to block on-going and new transactions)
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L-Store
°

L-Store: Contention-free Merge

Asynchronous Lazy Merge Read Optimized
i ives upd: ) (compressed, read-only pages)

ted
-
: = 777[;\:' = = Ail/i\\w'jr

- &=
Write Optimized 7 — D D I I
essed, append-only upd )

=" po
N |

D I D IO Indirection Column
(uncompressed, in-place update)

Merge Queue
(tail pages to be merged)

Lazy independent merging of base pages with their corresponding tail pages
(resembling a local left outer-join of the base and tail pages)
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L-Store
°

L-Store: Contention-free Merge

Asynchronous Lazy Merge Read Optimized
t itted ives upd: ) In-page, Independent (compressed, read-only pages)

e w2 L |
B LI | |
= [ joeny

|

Indirection Column
(uncompressed, in-place update)

I

I
[
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[
[
J

[
—

[
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[

[

J

Independently tracking the lineage information within every page
(no need to coordinate merges among different columns of the same records)
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L-Store
°

L-Store: Epoch-based Contention-free De-allocation

— — Read Optimized
_— Page Directory ———__ (compressed, read-only pages)

t /

Epoch-based De-allocation
(longest running query) —

L
Write Optimized . = = = -
etz w1 ] | (o0
!

EIELLT

Asynchronous Lazy Merge L

N Indirection Column
X I = (uncompressed, in-place update)
N

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30/ 43



L-Store
°

L-Store: Epoch-based Contention-free De-allocation

— — Read Optimized
_— Page Directory ———__ (compressed, read-only pages)

’
/f

Epoch-based De-allocation
(longest running query)

Write Optimized /) = = = — \\:
nomareses oot smrovsse || (@ 1001
= X _ In-page, Independent

L]

R — D D I I Lineage Tracking

Indirection Column
(uncompressed, in-place update)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)
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L-Store
°

L-Store: Epoch-based Contention-free De-allocation

B _— Read Optimized
_— Page Directory ———__ (compressed, read-only pages)

— — /N
ML |
{nn ! g L
Write Optimized /) = = = — N
e ZEEeel ][00
) 0 -
L]

L

Epoch-based De-allocation
(longest running query) —

EIELLT

Asynchronous Lazy Merge L g |
7 Indirection Column
> D = % (uncompressed, in-place update)
%
%
|
Contention-free page de-allocation using an epoch-based approach

(no need to drain the ongoing transactions)
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L-Store
°

L-Store: Epoch-based Contention-free De-allocation

_— T Read Optimized
_— Page Directory ———__ (compressed, read-only pages)

A= m — — =N\
L . ) T L VI
) O J

Epoch-based De-allocation { g —

(longest running query) = D D I I
Write Optimized /) = = = — %
(i d, append-only updates) | || | I ]DII
) 0 -
L]

EIELLT

Asynchronous Lazy Merge L
Indirection Column

D > D = (uncompressed, in-place update)
%
|
Contention-free page de-allocation using an epoch-based approach

(no need to drain the ongoing transactions)
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L-Store
°

L-Store: Epoch-based Contention-free De-allocation

— T Read Optimized
_— Page Directory ———__ (compressed, read-only pages)

iz
f
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Epoch-based De-allocation
(longest running query) =

In-page, Independent

- D D I I I Lineage Tracking

Write Optimized ] = = = [
e 22 ] ey
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U

EIELLT

Asynchronous Lazy Merge

7 Indirection Column
D X D = (uncompressed, in-place update)

|
Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)
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Evaluation

Experimental Analysis
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Evaluation
°

Experimental Settings

m Hardware:
m 2 X 6-core Intel(R) Xeon(R) CPU E5-2430 @ 2.20GHz, 64GB, 15 MB L3 cache

m Workload: Extended Microsoft Hekaton Benchmark

m Comparison with In-place Update + History and Delta + Blocking Merge
Effect of varying contention levels
Effect of varying the read/write ratio of short update transactions
Effect of merge frequency on scan
Effect of varying the number of short update vs. long read-only transactions
Effect of varying L-Store data layouts (row vs. columnar)
Effect of varying the percentage of columns read in point queries
Comparison with log-structured storage architecture (Leve/DB)
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Evaluation
°

Effect of Varying Co tion Levels

2
—8—|-Store —o—L-Store

- 0.8 In-place Update + History Q) In-place Update + History
g : Delta + Blocking Merge § 1.5 Delta + Blocking Merge
s 06 =
5 31
2
£ 0.4 Eﬂ
3 2 o5
5 0.2 ¥ s Y .

0 0

0 5 10 15 20 25 0 5 10 15 20 25
Number of Parallel Short Update Transactions Number of Parallel Short Update Transactions

Achieving up to 40x as increasing the update contention
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Evaluation
°

Effect of Merge Frequency on Scan Performance

Mixed OLTP + OLAP Workload; Low Contention
(1 Scan + 1 Merge Threads, Page Size = 32 KB)

M Scan Performance

1.5 (4 Update Threads)
1 M Scan Performance
(14 Update Threads)
0.5 I I
0 7!, | 1 -,. ] .
4K 8K 16K 32K 64K

Number of Tail Records Processed per Merge

Scan Execution Time (in seconds)

__________________________________________________________________________________|
Merge process is essential in maintaining efficient scan performance
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Evaluation
°

Effect of Mixed Workloads: Update Performance

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

M Lineage-based Data
Store (L-Store)

M In-place Update +
0.4 History
0.2 I M Delta + Blocking
Merge
o Aml_Hum Hum HEm Hillm
1 4 8 12 16

Number of Parallel Update Transactions

Update Throughput (million of txn/s)

__________________________________________________________________________________|
Eliminating latching & locking results in a substantial performance improvement
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Evaluation
°

Effect of Mixed Workloads: Read Performance

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

800
M Lineage-based Data

Store (L-Store)

600
M In-place Update +
400 History
200 W Delta + Blocking
II I Merge
o lmm_. HEN NEN HNEN HNEN
1 5 9 13 16

Number of Parallel Read-only Transactions

Read Throughput (txn/s)

__________________________________________________________________________________|
Coping with tens of update threads with a single merge thread
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Vision

Decentralized & Democratic Data Platform
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Vision
.

Data Management Challenges at Microscale

Extract-Transform-Load
(ETL)

ourp
(Write-optimized)

OLAP
(Read-optimized)

S walmart

OLTP and OLAP data are isolated at microscale
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Vision
.

Recap: Data Management Challenges at Microscale

= J OLAP+OLTP
V (Read & Write-
Reports optimized)

Walmart

First step is to unify OLTP and OLAP
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Vision
.

Platform Scaling: Data Partitioning

-
Data Partitioning

(within in a data center)

0
)
)
|
0

Ul
= J OLAP+OLTP
V (Read & Write-

Reports optimized)

Walmart

Moving towards distributed environment
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Vision
.

Platform Scaling: Non-blocking Agreement Protocols

First Transmit and then Commit
(Message Redundancy)

— Data Partitioning
W {withiniin a data center)

; i -~
;ﬂ J OLAP+OLTP

\1', (Read & Write-
Reports optimized)

Walmart

I ——
Message redundancy vs. latency trade-offs [EasyCommit, EDBT'18]
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Central Control: Data Gate Keeper

7%

\W\ 4

OLAP+OLTP
(Read & Write-
optimized)

Walmart

Vision
°

Conform to trusting the central authority and governance
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Vision
°

Decentralized Control: Removing Data Barrier

OLAP+OLTP
(Read & Write-
optimized)

Walmart

Seek trust in decentralized and democratic governance [PoE (under submission)]
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Vision
°

Democratic Control: Removing Trust Barrier

OLAP+OLTP
(Read & Write-
optimized)

Walmart

Seek trust in decentralized and democratic governance [PoE (under submission)]
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Vision
°

Global-scale Reliable Platform over Unreliable Hardware

- —
R - Data Partitioning

W (vithinin a data center)

~__
OLAP+OLTP

(Read & Write-
optimized)

Walmart

Self-managed infrastructure
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Vision
°

Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read & Write-
optimized)

Walmart

Cloud-managed infrastructure (trust the provider)
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Vision
°

Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read & Write-
optimized)

Walmart

Cloud-managed infrastructure (trust the provider)
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Vision
°

Global-scale Reliable Platform over Unreliable Hardware

/>

TETTTTTOTTTIOOTT IO

~_
OLAP+OLTP
(Read & Write-
optimized)

Walmart

__________________________________________________________________________________|
Light-weight, fault-tolerant, trusted middleware [Blockplane, (under submission)]
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Vision
°

Global-scale Reliable Platform over Unreliable Hardware

e

TETTTTTTTTTTTROOOTOTTOES

~_
OLAP+OLTP
(Read & Write-
optimized)

Walmart

___________________________________________________________________________________|
Fault-tolerant protocols vs. consistency models [MultiBFT, GeoBFT (under submission)]
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Vision
°

ExpoDB: Exploratory Data Platform Architecture

Application Layer / Testbed (YCSB, SYCSB, TPC-C Benchmarks) ]

} l Enable/Disable Secure Transactions ||
B} |
(et
| | ) / . AN
N v Execution Threads N
| = | « >
—— e Al T
5 655 59 — N - )
Block Creator | N /" Message/lO Queues
(Distributed Ledger) { ¥ | e
‘ ‘ ‘Commit Protocols:
Crypto Toolkit -ogging (e Q-Store, 2PC, 3PC, Calvin, EasyCommic)

A decentralized & democratic platform to unify OLTP and OLAP
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Conclusions

I[@ Conclusions
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Conclusions
®0

Contributions & Outlook

/

ExpoDB: Decentralized & Democratic Platform

* Decentralized & Democratic Control: PoE, MultiBFT, GeoBFT [under submission]
* Reliability over Unreliable Hardware: Blockplane [under submission]

Operational Data Stores: Velocity & Volume

* Index Maintenance: Indirection Technique [VLDB’13, VLDBJ'16]

* Concurrency Control: 2VCC Technique [VLDB’14, Middleware’16], EasyCommit [EDBT’18], QueCC [Viddleware’18]
 Hybrid Storage: Enhancing Key-Value Store [VLDBE’12, ICDE"14]

* Real-time OLTP+OLAP: Lineage-based Data Store (L-Store) [EDBT-18,ICDCS’16, 30+ Patents]
Stream Processing: Velocity
¢ High-dimensional Indexing: BE-Tree [SIGMOD’11, TODS’13], Compressed Stream Processing [ICDE’14]
« (Distributed) Top-k Indexing: BE*-Tree [ICDE’12, ICDCS’13, Middleware’17, ICDCS'17]

¢ Hardware Acceleration: FPGAs [VLDB’10, ICDE’12, VLDB’13, ICDE’15, SIGMOD Record’15, ICDE’16, USENIX ATC’16, ICDCS’17, ICDE’18]
* Novel Mappings: XML/XPath [EDBT’11], Distributed Workflow [TDKE’15, SIGMOD’15, ICDE’16, Middleware’16]
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Conclusions
oce

Questions?
Thank youl!

Exploratory Systems Lab (ExpolLab)
Website:

. 00
Y Expolab AN
Creativity Unfolded CxpoDf
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