
Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Concurrency Protocols in L-Store

Mohammad Sadoghi

Exploratory Systems Lab
University of California, Davis

ECS165a - Winter 2020

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 1 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

1 Data Velocity: Index Maintenance

2 Data Volume: MVCC Concurrency

3 Data Volume: Coordination-free Concurrency

4 Combining Volume & Velocity: Lineage-based Storage Architecture

5 Decentralized & Democratic Data Platform

6 Conclusions

7 References

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 2 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Extending Storage Hierarchy with Indirection Layer

SSD

Index
Maintenance

VLDB'13

Operational Data
Volume & Velocity
(Storage Architecture,

Indexing & Concurrency)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 3 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data
velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra
level of indirection in order to

Decouple Logical and Physical Locations of Records to
Reduce Index Maintenance

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 4 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data
velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra
level of indirection in order to

Decouple Logical and Physical Locations of Records to
Reduce Index Maintenance

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 4 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data
velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra
level of indirection in order to

Decouple Logical and Physical Locations of Records to
Reduce Index Maintenance

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 4 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Traditional Multi-version Indexing: Updating Records

1

1

HDD

1

RID IndexRID Index

Record Version ID

Updating random leaf pages

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 5 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Traditional Multi-version Indexing: Updating Records

1

1

HDD

1
2

RID IndexRID Index

Updating random leaf pages

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 5 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Traditional Multi-version Indexing: Updating Records

1

1

HDD

1
2

RID IndexRID Index

Updating random leaf pages

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 5 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Traditional Multi-version Indexing: Updating Records

1

1

HDD

1
2

2

RID IndexRID Index

Updating random leaf pages

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 5 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Indirection Indexing: Updating Records

HDD

RID IndexRID Index

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 6 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Indirection Indexing: Updating Records

HDD
RID IndexRID Index

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 6 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Indirection Indexing: Updating Records

SSD

HDD

RID: Record Identifier LID: Logical Identifier

LID IndexLID Index

Indirection Index
(LtoR Mapping)

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 6 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Indirection Indexing: Updating Records

1

1

HDD

1

2

Tail (append-only)

SSD

1

RID: Record Identifier LID: Logical Identifier

LID Index

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 6 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Indirection Indexing: Updating Records

1

1

HDD

1

2

Tail (append-only)

SSD

1

RID: Record Identifier LID: Logical Identifier

LID Index

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 6 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Indirection Indexing: Updating Records

1

1

HDD

1

2

Tail (append-only)

SSD

1 2

RID: Record Identifier LID: Logical Identifier

LID Index

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 6 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Analytical & Experimental Evaluations

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 7 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Indirection Time Complexity Analysis

Legend

K Number of indexes

LB LIDBlock size

M Number of matching records

Method Type Imm. SSD Def. SSD Imm. HDD Def. HDD

Base Deletion 0 0 2 + K ≤ 1 + K
Single-attr. update 0 0 3 + K ≤ 2 + K
Insertion 0 0 1 + K ≤ 1 + K
Search Uniq. 0 0 2 0
Search Mult. 0 0 1 + M 0

Indirection Deletion 2 0 2 ≤ 3
Single-attr. update 2 0 4 ≤ 3
Insertion 2 + 2K 2K/LB 1 ≤ 1 + 2K/LB
Search Uniq. 2 0 2 0
Search Mult. 1 + M 0 1 + M 0

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 8 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Experimental Setting

Hardware:

(2 × 8-core) Intel(R) Xeon(R) CPU E7-4820 @ 2.00GHz, 32GB, 2 × HDD,
SSD Fusion-io

Software:

Database: IBM DB2 9.7
Prototyped in a commercial proprietary database
Prototyped in Apache Spark by UC Berkeley
LIBGist v.1.0: Generalized Search Tree C++ Library by UC Berkeley (5K LOC)
(Predecessor of Generalized Search Tree (GiST) access method for PostgreSQL)
LIBGistmv Prototype: Multi-version Generalized Search Tree C++ Library over
LIBGist supporting Indirection/LIDBlock/DeltaBlock (3K LOC)

Data:

TPC-H benchmark
Microsoft Hekaton micro benchmark

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 9 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Indirection: Effect of Indexes in Operational Data Stores

7 (PKs) 8 9 10 11 12 13 14 15 16 17
0

0.2

0.4

0.6

0.8

1

1.2
TPC-H: all tables; Scale Factor: 20

Query (Base)
Query (Indirection)
Update (Base)
Update (Indirection)

Number of Indexes

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

7 (PKs) 8 9 10 11 12 13 14 15 16 17
0

0.2

0.4

0.6

0.8

1

1.2
TPC-H: all tables; Scale Factor: 20

Update (Base)
Update (Indirection)

Number of Indexes

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

Substantially improving the update time ...

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 10 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Indirection: Effect of Indexes in Operational Data Stores

7 (PKs) 8 9 10 11 12 13 14 15 16 17
0

0.2

0.4

0.6

0.8

1

1.2
TPC-H: all tables; Scale Factor: 20

Query (Base)
Query (Indirection)
Update (Base)
Update (Indirection)

Number of Indexes

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

... Consequently affording more indexes and significantly reducing the query time

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 10 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

1 Data Velocity: Index Maintenance

2 Data Volume: MVCC Concurrency

3 Data Volume: Coordination-free Concurrency

4 Combining Volume & Velocity: Lineage-based Storage Architecture

5 Decentralized & Democratic Data Platform

6 Conclusions

7 References

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 11 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Introducing Multi-version Concurrency Control

Data Volume
(Storage Architecture,

Indexing & Concurrency)

SSD

2VCC
VLDB'14

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 12 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Generalized Concurrency Control: Volume Dimension

Observed Trends

In operational multi-version databases, there is a tremendous opportunity
to avoid clashes between readers (scanning a large volume of data) and
writers (frequent updates).

Introducing a (latch-free) two-version concurrency control (2VCC) by
extending indirection mapping (i.e., central coordination mechanism) and

exploiting existing two-phase locking (2PL) in order to
Decouple Readers/Writers to Reduce Contention

(Pessimistic and Optimistic Concurrency Control Coexistence)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 13 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Generalized Concurrency Control: Volume Dimension

Observed Trends

In operational multi-version databases, there is a tremendous opportunity
to avoid clashes between readers (scanning a large volume of data) and
writers (frequent updates).

Introducing a (latch-free) two-version concurrency control (2VCC) by
extending indirection mapping (i.e., central coordination mechanism) and

exploiting existing two-phase locking (2PL) in order to

Decouple Readers/Writers to Reduce Contention
(Pessimistic and Optimistic Concurrency Control Coexistence)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 13 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Generalized Concurrency Control: Volume Dimension

Observed Trends

In operational multi-version databases, there is a tremendous opportunity
to avoid clashes between readers (scanning a large volume of data) and
writers (frequent updates).

Introducing a (latch-free) two-version concurrency control (2VCC) by
extending indirection mapping (i.e., central coordination mechanism) and

exploiting existing two-phase locking (2PL) in order to
Decouple Readers/Writers to Reduce Contention

(Pessimistic and Optimistic Concurrency Control Coexistence)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 13 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

2V-Indirection Indexing: Updating Records

SSD

HDD

RID: Record Identifier LID: Logical Identifier

LID Index

Indirection
Mapping

Recap: Indirection technique for reducing index maintenance

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 14 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

2V-Indirection Indexing: Updating Records

SSD

HDD

cRID: Committed
Record Identifier

LID: Logical Identifier

LID Index

2V-Indirection
Mapping

uRID: Uncommitted
Record Identifier

Extending the indirection to committed/uncommitted records

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 14 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

2V-Indirection Indexing: Updating Records

SSD

HDD

cRID: Committed
Record Identifier

LID: Logical Identifier

LID Index
Tail (append-only)

1

1

1

uRID: Uncommitted
Record Identifier

Extending the indirection to committed/uncommitted records

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 14 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

2V-Indirection Indexing: Updating Records

SSD

HDD

cRID: Committed
Record Identifier

LID: Logical Identifier

LID Index

uRID: Uncommitted
Record Identifier

Tail (append-only)

1

1

1

2

Decoupling readers/writers to eliminate contention

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 14 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

2V-Indirection Indexing: Updating Records

SSD

HDD

cRID: Committed
Record Identifier

LID: Logical Identifier

LID Index

uRID: Uncommitted
Record Identifier

Tail (append-only)

1

1

1

2

Decoupling readers/writers to eliminate contention

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 14 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

2V-Indirection Indexing: Updating Records

SSD

HDD

cRID: Committed
Record Identifier

LID: Logical Identifier

LID Index

uRID: Uncommitted
Record Identifier

Tail (append-only)

1

1

1

2

3

Implicit Indicator of
Write-Write Conflicts

Holding Read Counters
(Latch-free Coordination)

Decoupling readers/writers to eliminate contention

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 14 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Overview of Two-version Concurrency Control Protocol

Growing Phase:
Acquiring Locks

Two-phase locking (2PL) consisting of growing and shrinking phases

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Overview of Two-version Concurrency Control Protocol

Growing Phase:
Acquiring Locks

Shrinking Phase:
Releasing Locks

Two-phase locking (2PL) consisting of growing and shrinking phases

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Overview of Two-version Concurrency Control Protocol

Growing Phase:
Acquiring Locks

Shrinking Phase:
Releasing Locks

Two-phase locking (2PL) consisting of growing and shrinking phases

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Overview of Two-version Concurrency Control Protocol

Growing Phase:
Acquiring Locks

Shrinking Phase:
Releasing Locks

Extending 2PL with certify phase

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Overview of Two-version Concurrency Control Protocol

Growing Phase:
Acquiring Locks

Shrinking Phase:
Releasing Locks

Exclusive
Locks

Certify Phase:
Upgrading Locks

Exclusive locks held for shorter period (inherently optimistic)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Overview of Two-version Concurrency Control Protocol

Growing Phase:
Acquiring Locks

Shrinking Phase:
Releasing Locks

Exclusive
Locks

Certify Phase:
Upgrading Locks

Exclusive locks held for shorter period (inherently optimistic)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Overview of Two-version Concurrency Control Protocol

Growing Phase:
Acquiring Locks

Shrinking Phase:
Releasing Locks

Certify Phase:
Upgrading Locks

Exclusive
Locks

(relaxed)

Wait
Dependency

Relaxed exclusive locks to allow speculative reads (increased optimism)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Overview of Two-version Concurrency Control Protocol

Growing Phase:
Acquiring Locks

Shrinking Phase:
Releasing Locks

Exclusive
Locks

Certify Phase:
Upgrading Locks

Lock Waits
(counter + queue)

Blocking

Trade-offs between blocking (i.e., locks) vs. non-blocking (i.e., read counters)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Experimental Analysis

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 16 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

2VCC: Effect of Parallel Update Transactions

1 1.8 3.4 6.2 8.6

43.4

5

25

45

1

4

16

64

256

1024

4096

1 8 16 24 32 64

Im
p

ro
ve

m
e

n
t

ra
ti

o

U
p

d
at

e
 E

xe
cu

ti
o

n
 T

im
e

 in
 s

e
co

n
d

s

Number of Parallel Transactions

Update Only Workload; High Contention

Single-version

Multi-version

Improvement ratio

Substantial gain by reducing the read/write contention & using non-blocking operations

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 17 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

2VCC: Effect of Parallel Update Transactions

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

1 8 16 24 32 64

Si
n

gl
e

-v
e

rs
io

n
 t

o
 M

u
lt

i-
ve

rs
io

n
 R

at
io

Number of Parallel Transactions

Lock Statistics Comparison; High Contention

Deadlock Ratio

Number of Lock Waits Ratio

Lock Wait Time Ratio

Substantial gain by reducing the read/write contention & using non-blocking operations

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 18 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

1 Data Velocity: Index Maintenance

2 Data Volume: MVCC Concurrency

3 Data Volume: Coordination-free Concurrency

4 Combining Volume & Velocity: Lineage-based Storage Architecture

5 Decentralized & Democratic Data Platform

6 Conclusions

7 References

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 19 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Introducing Coordination-free Concurrency Control

Data Volume
(Storage Architecture,

Indexing & Concurrency)

SSD

QueCC
Middleware'18

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 20 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.

Execution and Synchronization Decoupling

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.

Execution and Synchronization Decoupling

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.

Execution and Synchronization Decoupling

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.

Execution and Synchronization Decoupling

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Queue-oriented, Control-free Concurrency (QueCC)

Batching Client
Transactions

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 22 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Queue-oriented, Control-free Concurrency (QueCC)

Batching Client
Transactions

Planning Threads
(Pre-determined Priority)

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 22 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Queue-oriented, Control-free Concurrency (QueCC)

Batching Client
Transactions

Planning Threads
(Pre-determined Priority)

High Priority
Queues

Low Priority
Queues

Index

Main Memory
DB Storage

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 22 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Queue-oriented, Control-free Concurrency (QueCC)

Execution
Queues

Batching Client
Transactions

Planning Threads
(Pre-determined Priority)

High Priority
Queues

Low Priority
Queues

Index

Main Memory
DB Storage

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 22 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Queue-oriented, Control-free Concurrency (QueCC)

Execution Threads

Execution
Queues

Client Transaction
Queues

Planning Threads
(Pre-determined Priority)

High Priority
Queues

Low Priority
Queues

Index

Main Memory
DB Storage

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 22 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Experimental Analysis

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 23 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

QueCC: Effect of Parallel Update Transactions

4 8 16 24 32
Worker Threads

0.5

1.0

1.5

2.0

T
h
ro

u
g
h
p
u
t

(M
ill

io
n
 T

P
S
)

4 8 16 24 32
Worker Threads

0
10
20
30
40
50
60
70
80

A
b
o
rt

 %

Avoiding thread coordination & eliminating all execution-induced aborts

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 24 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Unifying OLTP and OLAP

Unifying OLTP & OLAP
EDBT'18, VLDBJ'16, ICDCS'16

Operational Data
Volume & Velocity
(Storage Architecture,

Indexing & Concurrency)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 25 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 26 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 26 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 26 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Storage Layout Conflict

Read Optimized
(compressed, read-only pages)

Write Optimized
(uncompressed in-place updates)

Columnar StorageRow-based Storage

Write-optimized (i.e., uncompressed & row-based) vs. read-optimized (i.e.,
compressed & column-based) layouts

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 27 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Lineage-based Storage Architecture (LSA): Intuition

Base Pages
(Read-only)

Tail Pages
(Append-only)

Index

Lineage Mapping
(indirection layer, stable LID-to-RID mapping)

 Base
Version

(anchored RIDs)

 Latest
Version

(monotonically
increasing RIDs)

In-page Lineage Tacking

Points to
Stable LIDs

(i.e., anchored RID)

RIDi

RIDi

RIDk

RIDj

Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 28 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Lineage-based Storage Architecture (LSA): Intuition

Base Pages
(Read-only)

Tail Pages
(Append-only)

Index

Lineage Mapping
(indirection layer, stable LID-to-RID mapping)

 Base
Version

(anchored RIDs)

 Latest
Version

(monotonically
increasing RIDs)

Append-only
Updates

(physical update
independence)

In-page Lineage Tacking

Points to
Stable LIDs

(i.e., anchored RID)

Monotonically
Increasing Lineage

(updates are assigned RIDs
in an increasing order)

RIDi

RIDi

RIDk

RIDj

Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 28 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Lineage-based Storage Architecture (LSA): Intuition

Base Pages
(Read-only)

Tail Pages
(Append-only)

Index

Lineage Mapping
(indirection layer, stable LID-to-RID mapping)

 Base
Version

(stable
anchored RIDs)

 Latest
Version

(monotonically
increasing RIDs)

Append-only
Updates

(physical update
independence)

Lazy Update
Consolidation

(snapshot reconstruction via lineage
mapping & in-page tracking)

In-page Lineage Tacking

In-page Lineage Tacking

Data Block RIDs
Remain Unchanged

(stable reference, anchored RIDs)

Points to
Stable LIDs

(i.e., anchored RID)

Monotonically Increasing
In-page Lineage

Monotonically
Increasing Lineage

(updates are assigned RIDs
in an increasing order)

RIDi

Consolidated Data
(Read-only)

RIDi

RIDk

RIDj

Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 28 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Lineage-based Storage Architecture (LSA): Overview

Columnar Storage
Base Pages
(read-only)

Tail Pages
(append-only)

Range
Partitioning

Pa
ge

 D
ir

ec
to

ry

Record
(spanning over a set of aligned columns)

Overview of the lineage-based storage architecture
(base pages and tail pages are handled identically at the storage layer)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 29 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Detailed Design

Columnar Storage

Range Partitioning

Base Pages
(read-only)

Read Optimized
(compressed, read-only pages)

Records are range-partitioned and compressed into a set of ready-only base pages
(accelerating analytical queries)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Updated Columns

Corresponding
Columns

Base Pages
(read-only)Tail Pages

(append-only)

Read Optimized
(compressed, read-only pages)

Recent updates for a range of records are clustered in their tails pages
(transforming costly point updates into an amortized analytical-like query)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Updated Columns

Base Pages
(read-only)Tail Pages

(append-only)

Different Versions
of the Record

Base Record
(older version)

Tail Record
(latest version)

Read Optimized
(compressed, read-only pages)

Recent updates for a range of records are clustered in their tails pages
(transforming costly point updates into an amortized analytical-like query)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Pre-allocated Space
(lazily)

Base Pages
(read-only)Tail Pages

(append-only)

Read Optimized
(compressed, read-only pages)

Recent updates are strictly appended, uncompressed in the pre-allocated space
(eliminating the read/write contention)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Indirection Column
(uncompressed, in-place update)

Forward Pointer to the
Latest Version of the Record

Indirection Column
(back pointer to the previous version)

Read Optimized
(compressed, read-only pages)

Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Indirection Column
(uncompressed, in-place update)

Indirection Column
(back pointer to the previous version)

New Version

Read Optimized
(compressed, read-only pages)

Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Indirection Column
(uncompressed, in-place update)

Indirection Column
(back pointer to the previous version)

New Version

Read Optimized
(compressed, read-only pages)

Backward
Pointer

Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Contention-free Merge

Write Optimized
(uncompressed, append-only updates)

Merge Queue
(tail pages to be merged)

Consecutive Set of
Committed Updates

Indirection Column
(uncompressed, in-place update)

Read Optimized
(compressed, read-only pages)

Contention-free merging of only stable data: read-only and committed data
(no need to block on-going and new transactions)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Contention-free Merge
Read Optimized

(compressed, read-only pages)

Write Optimized
(uncompressed, append-only updates)

⋈ =

Asynchronous Lazy Merge
(committed, consecutives updates)

Indirection Column
(uncompressed, in-place update)

Merge Queue
(tail pages to be merged)

Lazy independent merging of base pages with their corresponding tail pages
(resembling a local left outer-join of the base and tail pages)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Contention-free Merge

Write Optimized
(uncompressed, append-only updates)

In-page, Independent
Lineage Tracking

Asynchronous Lazy Merge
(committed, consecutives updates)

⋈ =

Indirection Column
(uncompressed, in-place update)

Read Optimized
(compressed, read-only pages)

Independently tracking the lineage information within every page
(no need to coordinate merges among different columns of the same records)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Epoch-based Contention-free De-allocation

Epoch-based De-allocation
(longest running query)

Page Directory

Indirection Column
(uncompressed, in-place update)

Write Optimized
(uncompressed, append-only updates)

Read Optimized
(compressed, read-only pages)

Asynchronous Lazy Merge

⋈ =

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Epoch-based Contention-free De-allocation

In-page, Independent
Lineage Tracking

Page Directory

Indirection Column
(uncompressed, in-place update)

Write Optimized
(uncompressed, append-only updates)

Epoch-based De-allocation
(longest running query)

Read Optimized
(compressed, read-only pages)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Epoch-based Contention-free De-allocation

Page Directory

Indirection Column
(uncompressed, in-place update)

Write Optimized
(uncompressed, append-only updates)

Epoch-based De-allocation
(longest running query)

Asynchronous Lazy Merge

⋈ =

Read Optimized
(compressed, read-only pages)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Epoch-based Contention-free De-allocation

Page Directory

Indirection Column
(uncompressed, in-place update)

Write Optimized
(uncompressed, append-only updates)

Epoch-based De-allocation
(longest running query)

Asynchronous Lazy Merge

⋈ =

Read Optimized
(compressed, read-only pages)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

L-Store: Epoch-based Contention-free De-allocation

Epoch-based De-allocation
(longest running query)

In-page, Independent
Lineage Tracking

Write Optimized
(uncompressed, append-only updates)

Page Directory

Indirection Column
(uncompressed, in-place update)

Asynchronous Lazy Merge

⋈ =

Read Optimized
(compressed, read-only pages)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Experimental Analysis

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 31 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Experimental Settings

Hardware:

2 × 6-core Intel(R) Xeon(R) CPU E5-2430 @ 2.20GHz, 64GB, 15 MB L3 cache

Workload: Extended Microsoft Hekaton Benchmark

Comparison with In-place Update + History and Delta + Blocking Merge
Effect of varying contention levels
Effect of varying the read/write ratio of short update transactions
Effect of merge frequency on scan
Effect of varying the number of short update vs. long read-only transactions
Effect of varying L-Store data layouts (row vs. columnar)
Effect of varying the percentage of columns read in point queries
Comparison with log-structured storage architecture (LevelDB)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 32 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Effect of Varying Contention Levels

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

0

0.5

1

1.5

2

0 5 10 15 20 25

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

Achieving up to 40× as increasing the update contention

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 33 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Effect of Merge Frequency on Scan Performance

0

0.5

1

1.5

2

2.5

4K 8K 16K 32K 64KSc
an

 E
xe

cu
ti

o
n

 T
im

e
 (

in
 s

e
co

n
d

s)

Number of Tail Records Processed per Merge

Mixed OLTP + OLAP Workload; Low Contention
(1 Scan + 1 Merge Threads, Page Size = 32 KB)

Scan Performance
(4 Update Threads)

Scan Performance
(14 Update Threads)

Merge process is essential in maintaining efficient scan performance

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 34 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Effect of Mixed Workloads: Update Performance

0

0.2

0.4

0.6

0.8

1

1 4 8 12 16U
p

d
at

e
 T

h
ro

u
gh

p
u

t
(m

ill
io

n
 o

f
tx

n
/s

)

Number of Parallel Update Transactions

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

Lineage-based Data
Store (L-Store)

In-place Update +
History

Delta + Blocking
Merge

Eliminating latching & locking results in a substantial performance improvement

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 35 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Effect of Mixed Workloads: Read Performance

0

200

400

600

800

1 5 9 13 16

R
e

ad
 T

h
ro

u
gh

p
u

t
(t

xn
/s

)

Number of Parallel Read-only Transactions

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

Lineage-based Data
Store (L-Store)

In-place Update +
History

Delta + Blocking
Merge

Coping with tens of update threads with a single merge thread

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 35 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

1 Data Velocity: Index Maintenance

2 Data Volume: MVCC Concurrency

3 Data Volume: Coordination-free Concurrency

4 Combining Volume & Velocity: Lineage-based Storage Architecture

5 Decentralized & Democratic Data Platform

6 Conclusions

7 References

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 36 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Recap: Data Management Challenges at Microscale

OLAP
(Read-optimized)

OLTP
(Write-optimized)

Extract-Transform-Load	
(ETL)

Sales
Data	is	
Stale

OLTP and OLAP data are isolated at microscale

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 37 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Recap: Data Management Challenges at Microscale

OLAP+OLTP
(Read	&	Write-
optimized)Reports

First step is to unify OLTP and OLAP

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 37 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Platform Scaling: Data Partitioning

OLAP+OLTP
(Read	&	Write-
optimized)

Data	Partitioning	
(within	in	a	data	center)

Reports

Moving towards distributed environment

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 37 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Platform Scaling: Non-blocking Agreement Protocols

OLAP+OLTP
(Read	&	Write-
optimized)

Data	Partitioning	
(within	in	a	data	center)

Reports

First	Transmit	and	then	Commit	
(Message	Redundancy)

Message redundancy vs. latency trade-offs [EasyCommit, EDBT’18]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 37 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Central Control: Data Gate Keeper

OLAP+OLTP
(Read	&	Write-
optimized)

Conform to trusting the central authority and governance

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 38 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Decentralized Control: Removing Data Barrier

OLAP+OLTP
(Read	&	Write-
optimized)

Seek trust in decentralized and democratic governance [PoE (under submission)]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 38 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Democratic Control: Removing Trust Barrier

OLAP+OLTP
(Read	&	Write-
optimized)

Gate	Keeper

Seek trust in decentralized and democratic governance [PoE (under submission)]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 38 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read	&	Write-
optimized)

Data	Partitioning	
(within	in	a	data	center)

Reports

Self-managed infrastructure

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read	&	Write-
optimized)

Cloud-managed infrastructure (trust the provider)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read	&	Write-
optimized)

Cloud-managed infrastructure (trust the provider)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read	&	Write-
optimized)

Light-weight, fault-tolerant, trusted middleware [Blockplane, (under submission)]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read	&	Write-
optimized)

Fault-tolerant protocols vs. consistency models [MultiBFT, GeoBFT (under submission)]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

ExpoDB: Exploratory Data Platform Architecture

Application Layer / Testbed (YCSB, SYCSB, TPC-C Benchmarks)

Crypto Toolkit

Enable/Disable Secure Transactions

Block Creator
(Distributed Ledger)

Concurrency Control Protocols
(e.g., 2PL, QueCC, 2VCC, DORA, MVCC, Timestamp,
H-Store, NoWait, Silo, Foedus, MOCC, TicToc, Cicada)

Consensus Protocols
(e.g., PoE, Zyzzyva, Bitcoin-NG, PoW, PBFT, RBFT)

Storage Layer: Lineage-based Storage Architecture

Indexes
Data

Transaction
 Manager

Execution Threads

Message/IO Queues

Logging
Commit Protocols:

(e.g., Q-Store, 2PC, 3PC, Calvin, EasyCommit)

A decentralized & democratic platform to unify OLTP and OLAP

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

1 Data Velocity: Index Maintenance

2 Data Volume: MVCC Concurrency

3 Data Volume: Coordination-free Concurrency

4 Combining Volume & Velocity: Lineage-based Storage Architecture

5 Decentralized & Democratic Data Platform

6 Conclusions

7 References

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 40 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Contributions & Outlook

Stream	Processing:	Velocity
• High-dimensional	Indexing:	BE-Tree	[SIGMOD’11,	TODS’13], Compressed	Stream	Processing	[ICDE’14]
• (Distributed)	Top-k	Indexing:	BE*-Tree	[ICDE’12,	ICDCS’13,	Middleware’17,	ICDCS’17]
• Hardware	Acceleration:	FPGAs [VLDB’10,	ICDE’12,	VLDB’13,	ICDE’15,	SIGMOD	Record’15,	ICDE’16,	USENIX	ATC’16,	ICDCS’17,	ICDE’18]
• Novel	Mappings:	XML/XPath	[EDBT’11],	Distributed	Workflow	[TDKE’15,	SIGMOD’15,	ICDE’16,	Middleware’16]	

Operational	Data	Stores:	Velocity	&	Volume
• Index	Maintenance: Indirection	Technique	[VLDB’13,	VLDBJ’16]
• Concurrency	Control: 2VCC	Technique	[VLDB’14,	Middleware’16],	EasyCommit [EDBT’18],	QueCC [Middleware’18]
• Hybrid	Storage: Enhancing	Key-Value	Store	[VLDB’12,	ICDE’14]
• Real-time	OLTP+OLAP:	Lineage-based	Data	Store	(L-Store)	[EDBT-18,ICDCS’16,	30+	Patents]

ExpoDB:	Decentralized	&	Democratic	Platform	
• Decentralized	&	Democratic	Control:	PoE,	MultiBFT,	GeoBFT [under	submission]
• Reliability	over	Unreliable	Hardware:	Blockplane [under	submission]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 41 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Questions?
Thank you!

Exploratory Systems Lab (ExpoLab)
Website: https://msadoghi.github.io/

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 42 / 43

Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Related Publications (Patents Omitted)
I. Abdelaziz, A. Fokoue, O. Hassanzadeh, P. Zhang, M. Sadoghi.
Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions.
In J. Web Sem. pages 104–117, 2017.

A. Fokoue, O. Hassanzadeh, M. Sadoghi, and P. Zhang.
Predicting drug-drug interactions through similarity-based link prediction over web data.
In Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11-15, 2016, Companion Volume, pages 175–178, 2016.

A. Fokoue, M. Sadoghi, O. Hassanzadeh, and P. Zhang.
Predicting drug-drug interactions through large-scale similarity-based link prediction.
In The Semantic Web. Latest Advances and New Domains - 13th International Conference, ESWC 2016, Heraklion, Crete, Greece, May 29 - June 2, 2016, Proceedings, pages 774–789, 2016.

Rajesh R. Bordawekar and M. Sadoghi.
Accelerating database workloads by software-hardware-system co-design.
In 32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 1428–1431, 2016.

A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi, and D. Srivastava.
Benchmarking declarative approximate selection predicates.
In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD 2007, pages 353–364, New York, NY, USA, 2007. ACM.

A. Farroukh, M. Sadoghi, and H.-A. Jacobsen.
Towards vulnerability-based intrusion detection with event processing.
In Proceedings of the 5th ACM international conference on Distributed event-based system, DEBS 2011, pages 171–182, New York, New York, USA, 2011. ACM.

O. Hassanzadeh, M. Sadoghi, and R. J. Miller.
Accuracy of approximate string joins using grams.
In V. Ganti and F. Naumann, editors, Proceedings of the Fifth International Workshop on Quality in Databases, QDB 2007 at VLDB 2007 conference, Vienna, Austria, September 23, 2007, pages 11–18, 2007.

M. Hemmatpour, B. Montrucchio, M. Rebaudengo, and M. Sadoghi.
Kanzi: A distributed, in-memory key-value store.
In Proceedings of the 17th Annual Middleware Conference, Trento, Italy, December 1216, 2016, 2016.

M. Jergler, M. Sadoghi, and H.-A. Jacobsen.
D2WORM: A management infrastructure for distributed data-centric workflows.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 1427–1432, 2015.

M. Jergler, M. Sadoghi, and H.-A. Jacobsen.
Geo-distribution of flexible business processes over publish/subscribe paradigm.
In Proceedings of the 17th Annual Middleware Conference, Trento, Italy, December 1216, 2016, 2016.

P. Menon, T. Rabl, M. Sadoghi, and H. Jacobsen.
CaSSanDra: An SSD boosted key-value store.
In IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 1162–1167, 2014.

P. Menon, T. Rabl, M. Sadoghi, and H. Jacobsen.
Optimizing key-value stores for hybrid storage architectures.
In the 24th International Conference of Center for Advanced Studies on Collaborative Research, IBM CASCON 2014. Toronto, Canada, November 3-5, 2014. 2014.

N. Mohammadreza, M. Sadoghi, and H.-A. Jacobsen.
The FQP vision: Flexible query processing on a reconfigurable computing fabric.
SIGMOD Record - Special Issue on Visionary Ideas in Data Management , 44(2), pages 5–10, 2015.

V. Muthusamy, Y. Yoon, M. Sadoghi, and H.-A. Jacobsen.
eQoSystem: supporting fluid distributed service-oriented workflows.
In Proceedings of the 5th ACM international conference on Distributed event-based system, DEBS 2011, pages 381–382, New York, New York, USA, 2011. ACM.

M. Najafi, M. Sadoghi, and H. Jacobsen.
Flexible query processor on FPGAs.
PVLDB 2013, 6(12):1310–1313, 2013.

M. Najafi, M. Sadoghi, and H. Jacobsen.
Configurable hardware-based streaming architecture using online programmable-blocks.
In the 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages 819–830, 2015.

M. Najafi, M. Sadoghi, and H. Jacobsen.
The FQP vision: Flexible query processing on a reconfigurable computing fabric.
SIGMOD Record, 44(2):5–10, 2015.

M. Najafi, M. Sadoghi, and H. Jacobsen.
Splitjoin: A scalable, low-latency stream join architecture with adjustable ordering precision.
In 2016 USENIX Annual Technical Conference, USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016., pages 493–505, 2016.

T. Rabl, M. Sadoghi, S. Gómez-Villamor, V. Muntés-Mulero, H.-A. Jacobsen, and S. Mankovskii.
Solving big data challenges for enterprise application performance management.
Proceedings of the VLDB Endowment, PVLDB 2012, 5(12):1724–1735, Aug. 2012.

T. Rabl, M. Sadoghi, K. Zhang, and H. Jacobsen.
Poster: MADES - a multi-layered, adaptive, distributed event store.
In S. Chakravarthy, S. D. Urban, P. Pietzuch, and E. A. Rundensteiner, editors, The 7th ACM International Conference on Distributed Event-Based Systems, DEBS 2013, Arlington, TX, USA - June 29 - July 03, 2013, pages 343–344. ACM, 2013.

T. Rabl, K. Zhang, M. Sadoghi, N. K. Pandey, A. Nigam, C. Wang, and H.-A. Jacobsen.
Solving manufacturing equipment monitoring through efficient complex event processing: Debs grand challenge.
In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, DEBS 2012, pages 335–340, Berlin, Germany, 2012. ACM.

M. Sadoghi.
Towards an extensible efficient event processing kernel.
In Proceedings of the SIGMOD/PODS 2012 PhD Symposium, PhD 2012, pages 3–8, Scottsdale, Arizona, USA, 2012. ACM.

M. Sadoghi, I. Burcea, and H.-A. Jacobsen.
GPX-Matcher: a generic Boolean predicate-based XPath expression matcher.
In Proceedings of the 14th International Conference on Extending Database Technology, EDBT/ICDT 2011, pages 45–56, Uppsala, Sweden, 2011. ACM.

M. Sadoghi, M. Canim, B. Bhattacharjee, F. Nagel, and K. A. Ross.
Reducing database locking contention through multi-version concurrency.
PVLDB 2014, 7(13):1331–1342, 2014.

M. Sadoghi and H. Jacobsen.
Adaptive parallel compressed event matching.
In IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 364–375, 2014.

M. Sadoghi and H.-A. Jacobsen.
BE-Tree: an index structure to efficiently match Boolean expressions over high-dimensional discrete space.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, SIGMOD 2011, pages 637–648, Athens, Greece, 2011. ACM.

M. Sadoghi and H.-A. Jacobsen.
Location-based matching in publish/subscribe revisited.
In Proceedings of the Posters and Demo Track, Middleware 2012, pages 9:1–9:2, Montreal, Quebec, Canada, 2012. ACM.

M. Sadoghi and H.-A. Jacobsen.
Relevance matters: Capitalizing on less (top-k matching in publish/subscribe).
In IEEE 28th International Conference on Data Engineering, ICDE 2012, pages 786–797, Arlington, Virginia, USA, 2012. IEEE Computer Society.

M. Sadoghi and H.-A. Jacobsen.
Analysis and optimization for Boolean expression indexing.
ACM Trans. Database Syst., TODS 2013, 38(2):8:1–8:47, July 2013.

M. Sadoghi, H.-A. Jacobsen, M. Labrecque, W. Shum, and H. Singh.
Efficient event processing through reconfigurable hardware for algorithmic trading.
Proceedings of the VLDB Endowment, PVLDB 2010, 3(2):1525–1528, 2010.

M. Sadoghi, R. Javed, N. Tarafdar, H. Singh, R. Palaniappan, and H.-A. Jacobsen.
Multi-query stream processing on fpgas.
In Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, ICDE 2012, pages 1229–1232, Washington, DC, USA, 2012. IEEE Computer Society.

M. Sadoghi, M. Jergler, H.-A. Jacobsen, R. Hull, and R. Vaculin.
Safe distribution and parallel execution of data-centric workflows over the publish/subscribe abstraction.
IEEE Trans. on Knowl. and Data Eng., TKDE 2015, 2015.

M. Sadoghi, M. Jergler, H.-A. Jacobsen, R. Hull, and R. Vaculin.
Safe distribution and parallel execution of data-centric workflows over the publish/subscribe abstraction.
In 32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 1498–1499, 2016.

M. Sadoghi and N. Koudas.
SPIDER: Data Quality & Data Cleaning Project.
In the 15th International Conference of Center for Advanced Studies on Collaborative Research, IBM CASCON 2005. October 17-20, 2005. 2005.

M. Sadoghi, K. A. Ross, M. Canim, and B. Bhattacharjee.
Making updates disk-I/O friendly using SSDs.
PVLDB 2013, 6(11):997–1008, 2013.

M. Sadoghi, K. A. Ross, M. Canim, and B. Bhattacharjee.
Exploiting ssds in operational multiversion databases.
VLDB J., 25(5):651–672, 2016.

M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim.
L-Store: A real-time OLTP and OLAP system.
CoRR, abs/1601.04084, 2016.

M. Sadoghi, H. Singh, and H.-A. Jacobsen.
fpga-ToPSS: line-speed event processing on FPGAs.
In Proceedings of the 5th ACM international conference on Distributed event-based system, DEBS 2011, pages 373–374, New York, New York, USA, 2011. ACM.

M. Sadoghi, H. Singh, and H.-A. Jacobsen.
Towards highly parallel event processing through reconfigurable hardware.
In Proceedings of the Seventh International Workshop on Data Management on New Hardware, DaMoN 2011 at SIGMOD, pages 27–32, Athens, Greece, 2011. ACM.

M. Sadoghi.
ExpoDB: An Exploratory Data Science Platform.
In Proceedings of the 8th Biennial Conference on Innovative Data Systems Research, CIDR 2017, Chaminade, CA, USA, January 8-11, 2017.

M. Sadoghi, K. Srinivas, O. Hassanzadeh, Y-C. Chang, M. Canim, A. Fokoue, and Y A. Feldman.
Self-curating databases.
In Proceedings of the 19th International Conference on Extending Database Technology, EDBT’16, Bordeaux, France, March 15-16, 2016., pages 467–472, 2016.

T. Nguyen, M. Rodriguez-Muro, O. Hassanzadeh, A. Massimiliano Gliozzo, M. Sadoghi.
Joint Learning of Local and Global Features for Entity Linking via Neural Networks.
In Proceedings of the 26th International Conference on Computational Linguistics, COLING’16, Osaka, Japan, December 11-16, 2016, pages 2310–2320, 2016.

K. Zhang, M. Sadoghi, V. Muthusamy, and H.-A. Jacobsen.
Distributed ranked data dissemination in social networks.
In Proceedings of 33rd International Conference on Distributed Computing Systems, ICDCS 2013, Washington, DC, USA, 2013. IEEE Computer Society.

K. Zhang, M. Sadoghi, and H.-A. Jacobsen.
DL-store: A distributed hybrid OLTP and OLAP data processing engine.
In 36th IEEE International Conference on Distributed Computing Systems, ICDCS 2016, Nara, Japan, June 27-30, 2016, pages 769–770, 2016.

M. Najafi, K. Zhang, H.-A. Jacobsen, M. Sadoghi.
Hardware Acceleration Landscape for Distributed Real-time Analytics: Virtues and Limitations.
In IEEE 37th International Conference on Distributed Computing Systems (ICDCS 2017), Atlanta, GA, USA, 5-8 June, 2017, pages 1938–1948, 2017.

K. Zhang, V. Muthusamy, M. Sadoghi, H.-A. Jacobsen.
Efficient Covering for Top-k Filtering in Content-Based Publish/Subscribe Systems.
In IEEE 37th International Conference on Distributed Computing Systems (ICDCS 2017), Atlanta, GA, USA, 5-8 June, 2017, pages 2039–2044, 2017.

Ehab Abdelhamid, Mustafa Canim, Mohammad Sadoghi, Bishwaranjan Bhattacharjee, Yuan-Chi Chang, and Panos Kalnis.
Incremental frequent subgraph mining on large evolving graphs.
IEEE Trans. Knowl. Data Eng., 29(12):2710–2723, 2017.

Ehab Abdelhamid, Mustafa Canim, Mohammad Sadoghi, Bishwaranjan Bhattacharjee, Yuan-Chi Chang, and Panos Kalnis.
Incremental frequent subgraph mining on large evolving graphs.
2018.

Gonzalo I. Diaz, Achille Fokoue, and Mohammad Sadoghi.
Embeds: Scalable, ontology-aware graph embeddings.
In Proceedings of the 21th International Conference on Extending Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018., pages 433–436, 2018.

Jana Giceva and Mohammad Sadoghi.
Hybrid OLTP and OLAP.
In Sherif Sakr and Albert Zomaya, editors, Encyclopedia of Big Data Technologies, pages 1–11. Springer International Publishing, Cham, 2018.

Suyash Gupta and Mohammad Sadoghi.
Blockchain Transaction Processing.
In Sherif Sakr and Albert Zomaya, editors, Encyclopedia of Big Data Technologies, pages 1–11. Springer International Publishing, Cham, 2018.

Suyash Gupta and Mohammad Sadoghi.
Easycommit: A non-blocking two-phase commit protocol.
In Proceedings of the 21th International Conference on Extending Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018., pages 157–168, 2018.

Mohamed S. Hassan, Tatiana Kuznetsova, Hyun Chai Jeong, Walid G. Aref, and Mohammad Sadoghi.
Extending in-memory relational database engines with native graph support.
In Proceedings of the 21th International Conference on Extending Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018., pages 25–36, 2018.

Mohamed S. Hassan, Tatiana Kuznetsova, Hyun Chai Jeong, Walid G. Aref, and Mohammad Sadoghi.
Grfusion: Graphs as first-class citizens in main-memory relational database systems.
In Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 1789–1792, 2018.

Mohammedreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen.
A scalable circular pipeline design for multi-way stream joins in hardware.
In 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018, 2018.

Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhattacharjee, and Mustafa Canim.
L-store: A real-time OLTP and OLAP system.
In Proceedings of the 21th International Conference on Extending Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018., pages 540–551, 2018.

Kaiwen Zhang, Mohammad Sadoghi, Vinod Muthusamy, and Hans-Arno Jacobsen.
Efficient covering for top-k filtering in content-based publish/subscribe systems.
In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference, Las Vegas, NV, USA, December 11 - 15, 2017, pages 174–184, 2017.

T. Qadah and M. Sadoghi.
QueCC: A queue-oriented, control-free concurrency architecture.
In Proceedings of the 19th ACM/IFIP/USENIX Middleware Conference, Rennes, France, December 10 - 14, 2018, 2018.

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 43 / 43

	Data Velocity: Index Maintenance
	Data Volume: MVCC Concurrency
	Data Volume: Coordination-free Concurrency
	Combining Volume & Velocity: Lineage-based Storage Architecture
	Decentralized & Democratic Data Platform
	Conclusions
	References

