
Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Concurrency Protocols in L-Store

Mohammad Sadoghi

Exploratory Systems Lab
University of California, Davis

ECS165a - Winter 2020

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 1 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

1 Data Velocity: Index Maintenance

2 Data Volume: MVCC Concurrency

3 Data Volume: Coordination-free Concurrency

4 Combining Volume & Velocity: Lineage-based Storage Architecture

5 Decentralized & Democratic Data Platform

6 Conclusions

7 References

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 2 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Extending Storage Hierarchy with Indirection Layer

SSD

Index 
Maintenance

VLDB'13

Operational Data 
Volume & Velocity
(Storage Architecture, 

Indexing & Concurrency)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 3 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data
velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra
level of indirection in order to

Decouple Logical and Physical Locations of Records to
Reduce Index Maintenance
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Traditional Multi-version Indexing: Updating Records
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Analytical & Experimental Evaluations
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Indirection Time Complexity Analysis

Legend

K Number of indexes

LB LIDBlock size

M Number of matching records

Method Type Imm. SSD Def. SSD Imm. HDD Def. HDD

Base Deletion 0 0 2 + K ≤ 1 + K
Single-attr. update 0 0 3 + K ≤ 2 + K
Insertion 0 0 1 + K ≤ 1 + K
Search Uniq. 0 0 2 0
Search Mult. 0 0 1 + M 0

Indirection Deletion 2 0 2 ≤ 3
Single-attr. update 2 0 4 ≤ 3
Insertion 2 + 2K 2K/LB 1 ≤ 1 + 2K/LB
Search Uniq. 2 0 2 0
Search Mult. 1 + M 0 1 + M 0
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Experimental Setting

Hardware:

(2 × 8-core) Intel(R) Xeon(R) CPU E7-4820 @ 2.00GHz, 32GB, 2 × HDD,
SSD Fusion-io

Software:

Database: IBM DB2 9.7
Prototyped in a commercial proprietary database
Prototyped in Apache Spark by UC Berkeley
LIBGist v.1.0: Generalized Search Tree C++ Library by UC Berkeley (5K LOC)
(Predecessor of Generalized Search Tree (GiST) access method for PostgreSQL)
LIBGistmv Prototype: Multi-version Generalized Search Tree C++ Library over
LIBGist supporting Indirection/LIDBlock/DeltaBlock (3K LOC)

Data:

TPC-H benchmark
Microsoft Hekaton micro benchmark
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Indirection: Effect of Indexes in Operational Data Stores
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Substantially improving the update time ...
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... Consequently affording more indexes and significantly reducing the query time
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Introducing Multi-version Concurrency Control

Data Volume
(Storage Architecture, 

Indexing & Concurrency)

SSD

2VCC
VLDB'14

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 12 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Generalized Concurrency Control: Volume Dimension

Observed Trends

In operational multi-version databases, there is a tremendous opportunity
to avoid clashes between readers (scanning a large volume of data) and
writers (frequent updates).

Introducing a (latch-free) two-version concurrency control (2VCC) by
extending indirection mapping (i.e., central coordination mechanism) and

exploiting existing two-phase locking (2PL) in order to
Decouple Readers/Writers to Reduce Contention

(Pessimistic and Optimistic Concurrency Control Coexistence)
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2V-Indirection Indexing: Updating Records

SSD

HDD

RID: Record Identifier LID: Logical Identifier 

LID Index

Indirection 
Mapping

Recap: Indirection technique for reducing index maintenance
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Overview of Two-version Concurrency Control Protocol

Growing Phase: 
Acquiring Locks

Two-phase locking (2PL) consisting of growing and shrinking phases
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Overview of Two-version Concurrency Control Protocol

Growing Phase: 
Acquiring Locks

Shrinking Phase: 
Releasing Locks

Extending 2PL with certify phase
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Overview of Two-version Concurrency Control Protocol

Growing Phase: 
Acquiring Locks

Shrinking Phase: 
Releasing Locks

Exclusive 
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Certify Phase: 
Upgrading Locks

Exclusive locks held for shorter period (inherently optimistic)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Overview of Two-version Concurrency Control Protocol

Growing Phase: 
Acquiring Locks

Shrinking Phase: 
Releasing Locks

Exclusive 
Locks

Certify Phase: 
Upgrading Locks

Exclusive locks held for shorter period (inherently optimistic)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Overview of Two-version Concurrency Control Protocol

Growing Phase: 
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Shrinking Phase: 
Releasing Locks

Certify Phase: 
Upgrading Locks

Exclusive 
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Overview of Two-version Concurrency Control Protocol

Growing Phase: 
Acquiring Locks

Shrinking Phase: 
Releasing Locks

Exclusive 
Locks

Certify Phase: 
Upgrading Locks

Lock Waits
(counter + queue)

Blocking

Trade-offs between blocking (i.e., locks) vs. non-blocking (i.e., read counters)
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Experimental Analysis
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2VCC: Effect of Parallel Update Transactions
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Substantial gain by reducing the read/write contention & using non-blocking operations
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Introducing Coordination-free Concurrency Control

Data Volume
(Storage Architecture, 

Indexing & Concurrency)

SSD

QueCC
Middleware'18
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Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.

Execution and Synchronization Decoupling

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.

Execution and Synchronization Decoupling

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.

Execution and Synchronization Decoupling

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.

Execution and Synchronization Decoupling

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

Queue-oriented, Control-free Concurrency (QueCC)

Batching Client 
Transactions

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution
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QueCC: Effect of Parallel Update Transactions
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Avoiding thread coordination & eliminating all execution-induced aborts
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Unifying OLTP and OLAP

Unifying OLTP & OLAP
EDBT'18, VLDBJ'16, ICDCS'16

Operational Data 
Volume & Velocity
(Storage Architecture, 

Indexing & Concurrency)
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Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)
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Storage Layout Conflict

Read Optimized
(compressed, read-only pages)

Write Optimized
(uncompressed in-place updates)

Columnar StorageRow-based Storage

Write-optimized (i.e., uncompressed & row-based) vs. read-optimized (i.e.,
compressed & column-based) layouts
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Lineage-based Storage Architecture (LSA): Intuition
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Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)
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Lineage-based Storage Architecture (LSA): Overview

Columnar Storage
Base Pages
(read-only)

Tail Pages
(append-only)

Range 
Partitioning

Pa
ge

 D
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ry

Record
(spanning over a set of aligned columns)

Overview of the lineage-based storage architecture
(base pages and tail pages are handled identically at the storage layer)
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L-Store: Detailed Design

Columnar Storage

Range Partitioning

Base Pages
(read-only)

Read Optimized
(compressed, read-only pages)

Records are range-partitioned and compressed into a set of ready-only base pages
(accelerating analytical queries)
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L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Updated Columns

Corresponding 
Columns

Base Pages
(read-only)Tail Pages

(append-only)

Read Optimized
(compressed, read-only pages)

Recent updates for a range of records are clustered in their tails pages
(transforming costly point updates into an amortized analytical-like query)
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L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Pre-allocated Space
(lazily)

Base Pages
(read-only)Tail Pages

(append-only)

Read Optimized
(compressed, read-only pages)

Recent updates are strictly appended, uncompressed in the pre-allocated space
(eliminating the read/write contention)
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L-Store: Detailed Design

Write Optimized
(uncompressed, append-only updates)

Indirection Column
(uncompressed, in-place update)

Forward Pointer to the
Latest Version of the Record

Indirection Column
(back pointer to the previous version)

Read Optimized
(compressed, read-only pages)

Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)
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L-Store: Contention-free Merge

Write Optimized
(uncompressed, append-only updates)

Merge Queue
(tail pages to be merged)

Consecutive Set of 
Committed Updates

Indirection Column
(uncompressed, in-place update)

Read Optimized
(compressed, read-only pages)

Contention-free merging of only stable data: read-only and committed data
(no need to block on-going and new transactions)
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L-Store: Contention-free Merge
Read Optimized

(compressed, read-only pages)

Write Optimized
(uncompressed, append-only updates)

⋈ =

Asynchronous Lazy Merge 
(committed, consecutives updates)

Indirection Column
(uncompressed, in-place update)

Merge Queue
(tail pages to be merged)

Lazy independent merging of base pages with their corresponding tail pages
(resembling a local left outer-join of the base and tail pages)
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L-Store: Contention-free Merge

Write Optimized
(uncompressed, append-only updates)

In-page, Independent 
Lineage Tracking

Asynchronous Lazy Merge 
(committed, consecutives updates)

⋈ =

Indirection Column
(uncompressed, in-place update)

Read Optimized
(compressed, read-only pages)

Independently tracking the lineage information within every page
(no need to coordinate merges among different columns of the same records)
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L-Store: Epoch-based Contention-free De-allocation

Epoch-based De-allocation
(longest running query)

Page Directory

Indirection Column
(uncompressed, in-place update)

Write Optimized
(uncompressed, append-only updates)

Read Optimized
(compressed, read-only pages)

Asynchronous Lazy Merge 

⋈ =

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)
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Experimental Analysis
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Experimental Settings

Hardware:

2 × 6-core Intel(R) Xeon(R) CPU E5-2430 @ 2.20GHz, 64GB, 15 MB L3 cache

Workload: Extended Microsoft Hekaton Benchmark

Comparison with In-place Update + History and Delta + Blocking Merge
Effect of varying contention levels
Effect of varying the read/write ratio of short update transactions
Effect of merge frequency on scan
Effect of varying the number of short update vs. long read-only transactions
Effect of varying L-Store data layouts (row vs. columnar)
Effect of varying the percentage of columns read in point queries
Comparison with log-structured storage architecture (LevelDB)
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Effect of Varying Contention Levels

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

0

0.5

1

1.5

2

0 5 10 15 20 25

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

Achieving up to 40× as increasing the update contention
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Effect of Merge Frequency on Scan Performance
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Scan Performance
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Scan Performance
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Merge process is essential in maintaining efficient scan performance
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Effect of Mixed Workloads: Update Performance
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Lineage-based Data
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Merge

Eliminating latching & locking results in a substantial performance improvement
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Effect of Mixed Workloads: Read Performance
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Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 35 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References

1 Data Velocity: Index Maintenance

2 Data Volume: MVCC Concurrency

3 Data Volume: Coordination-free Concurrency

4 Combining Volume & Velocity: Lineage-based Storage Architecture

5 Decentralized & Democratic Data Platform

6 Conclusions

7 References
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Recap: Data Management Challenges at Microscale

OLAP
(Read-optimized)

OLTP
(Write-optimized)

Extract-Transform-Load	
(ETL)

Sales
Data	is	
Stale

OLTP and OLAP data are isolated at microscale
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Recap: Data Management Challenges at Microscale

OLAP+OLTP
(Read	&	Write-
optimized)Reports

First step is to unify OLTP and OLAP
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Platform Scaling: Data Partitioning

OLAP+OLTP
(Read	&	Write-
optimized)

Data	Partitioning	
(within	in	a	data	center)

Reports

Moving towards distributed environment
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Platform Scaling: Non-blocking Agreement Protocols

OLAP+OLTP
(Read	&	Write-
optimized)

Data	Partitioning	
(within	in	a	data	center)

Reports

First	Transmit	and	then	Commit	
(Message	Redundancy)

Message redundancy vs. latency trade-offs [EasyCommit, EDBT’18]
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Central Control: Data Gate Keeper

OLAP+OLTP
(Read	&	Write-
optimized)

Conform to trusting the central authority and governance
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Decentralized Control: Removing Data Barrier

OLAP+OLTP
(Read	&	Write-
optimized)

Seek trust in decentralized and democratic governance [PoE (under submission)]
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Democratic Control: Removing Trust Barrier

OLAP+OLTP
(Read	&	Write-
optimized)

Gate	Keeper

Seek trust in decentralized and democratic governance [PoE (under submission)]
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Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read	&	Write-
optimized)

Data	Partitioning	
(within	in	a	data	center)

Reports

Self-managed infrastructure
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Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read	&	Write-
optimized)

Cloud-managed infrastructure (trust the provider)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 / 43



Indirection 2VCC QueCC L-Store Evaluation Vision Conclusions References
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Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read	&	Write-
optimized)

Light-weight, fault-tolerant, trusted middleware [Blockplane, (under submission)]
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Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read	&	Write-
optimized)

Fault-tolerant protocols vs. consistency models [MultiBFT, GeoBFT (under submission)]
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ExpoDB: Exploratory Data Platform Architecture

Application Layer / Testbed ( YCSB, SYCSB, TPC-C Benchmarks)

Crypto Toolkit

Enable/Disable Secure Transactions

Block Creator
(Distributed Ledger)

Concurrency Control Protocols
(e.g., 2PL, QueCC, 2VCC, DORA, MVCC, Timestamp, 
H-Store, NoWait, Silo, Foedus, MOCC, TicToc, Cicada)

Consensus Protocols
(e.g., PoE, Zyzzyva, Bitcoin-NG, PoW, PBFT, RBFT)

Storage Layer: Lineage-based Storage Architecture

Indexes
Data

Transaction
 Manager

Execution Threads

Message/IO Queues

Logging
Commit Protocols: 

(e.g., Q-Store, 2PC, 3PC, Calvin, EasyCommit)

A decentralized & democratic platform to unify OLTP and OLAP
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1 Data Velocity: Index Maintenance

2 Data Volume: MVCC Concurrency

3 Data Volume: Coordination-free Concurrency

4 Combining Volume & Velocity: Lineage-based Storage Architecture

5 Decentralized & Democratic Data Platform

6 Conclusions

7 References
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Contributions & Outlook

Stream	Processing:	Velocity
• High-dimensional	Indexing:	BE-Tree	[SIGMOD’11,	TODS’13], Compressed	Stream	Processing	[ICDE’14]
• (Distributed)	Top-k	Indexing:	BE*-Tree	[ICDE’12,	ICDCS’13,	Middleware’17,	ICDCS’17]
• Hardware	Acceleration:	FPGAs [VLDB’10,	ICDE’12,	VLDB’13,	ICDE’15,	SIGMOD	Record’15,	ICDE’16,	USENIX	ATC’16,	ICDCS’17,	ICDE’18]
• Novel	Mappings:	XML/XPath	[EDBT’11],	Distributed	Workflow	[TDKE’15,	SIGMOD’15,	ICDE’16,	Middleware’16]	

Operational	Data	Stores:	Velocity	&	Volume
• Index	Maintenance: Indirection	Technique	[VLDB’13,	VLDBJ’16]
• Concurrency	Control: 2VCC	Technique	[VLDB’14,	Middleware’16],	EasyCommit [EDBT’18],	QueCC [Middleware’18]
• Hybrid	Storage: Enhancing	Key-Value	Store	[VLDB’12,	ICDE’14]
• Real-time	OLTP+OLAP:	Lineage-based	Data	Store	(L-Store)	[EDBT-18,ICDCS’16,	30+	Patents]

ExpoDB:	Decentralized	&	Democratic	Platform	
• Decentralized	&	Democratic	Control:	PoE,	MultiBFT,	GeoBFT [under	submission]
• Reliability	over	Unreliable	Hardware:	Blockplane [under	submission]
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Questions?
Thank you!

Exploratory Systems Lab (ExpoLab)
Website: https://msadoghi.github.io/
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