Concurrency Protocols in L-Store

Mohammad Sadoghi

Exploratory Systems Lab
University of California, Davis

ECS165a - Winter 2020

= Expolab

Creativity Unfolded

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 1/43

Indirection

Data Velocity: Index Maintenance

Mohammad Sadoghi

L-Store ECS165a - 2020 2 /43

Indirection

Extending Storage Hierarchy with Indirection Layer

w—

” ~
/ Operational Data
Volume & Ve ocity

/ (StorageArchitecture,
Indexing & Concurrency)

| Index |
Maintenance
\ VLDB'13 I
W
~ 7
— —-—

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 3/43

Indirection
°

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data

velocity.

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 4 /43

Indirection
°

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data

velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra
level of indirection in order to

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 4 /43

Indirection
°

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data

velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra
level of indirection in order to
Decouple Logical and Physical Locations of Records to
Reduce Index Maintenance

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 4 /43

Indirection
[1e}

Traditional Multi-version Indexing: Updating Records

HDD
» 1 "
s 1.
4
i
RID Index RID Index
Record Version ID

Updating random leaf pages

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 5/43

Indirection
[1e}

Traditional Multi-version Indexing: Updating Records

RID Index RID Index

|
Updating random leaf pages

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 5/43

Indirection
[1e}

Traditional Multi-version Indexing: Updating Records

HDD
> 1 ’w
0
y
RID Index RID Index

Updating random leaf pages

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020

Indirection
[1e}

Traditional Multi-version Indexing: Updating Records

RID Index RID Index

Updating random leaf pages

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 5/43

Indirection
oce

Indirection Indexing: Updating Records

RID Index RID Index

Mohammad Sadoghi (UC Davis) ECS165a - 2020 6 /43

Indirection
oce

Indirection Indexing: Updating Records

RID Index RID Index
HDD

Mohammad Sadoghi (UC Davis) ECS165a - 2020 6 /43

Indirection
oce

Indirection Indexing: Updating Records

LID: Logical Identifier RID: Record Identifier
SSD

2

R @‘

LID Inde: LID Index
H

' Indirection Index
(LtoR Mapping)

Mohammad Sadoghi (UC Davis)

ECS165a - 2020

6/ 43

Indirection
oce

Indirection Indexing: Updating Records

LID: Logical Identifier

RID: Record Identifier
SSD

LID Index \ .
DD Tail @ppend-onty)
»
1
y

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 6 /43

Indirection
oce

Indirection Indexing: Updating Records

LID: Logical Identifier SD RID: Record Identifier

-
®

LID Index =
HDD Tl#l (append-only)

ZZ7

MWW
A

§\\\

70}

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store

ECS165a - 2020 6 /43

Indirection
oce

Indirection Indexing: Updating Records

LID: Logical Identifier RID: Record Identifier

Rple !

SSD
lq\
LID Index HDDi \ Tll (append-only)
1 /
1
y

Y

1 -

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 6 /43

Indirection
[I}

Analytical & Experimental Evaluations

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 7 /43

Indirection
oce

Indirection Time Complexity Analysis

Legend

K | Number of indexes

LB | LIDBlock size

M | Number of matching records

Method Type Imm. SSD Def. SSD Imm. HDD Def. HDD
Base Deletion 0 0 2+ K <1+K
Single-attr. update | 0 0 3+K <2+K
Insertion 0 0 1+ K <1+K
Search Unigq. 0 0 2 0
Search Mult. 0 0 1+ M 0
Indirection | Deletion 2 0 2 <3
Single-attr. update | 2 0 4 <3
Insertion 2+2K 2K/LB 1 <142K/LB
Search Uniq. 2 0 2 0
Search Mult. 1+ M 0 1+M 0

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 8 /43

Indirection
[I}

Experimental Setting

m Hardware:

m (2 x 8-core) Intel(R) Xeon(R) CPU E7-4820 @ 2.00GHz, 32GB, 2 x HDD,
SSD Fusion-io

m Software:

m Database: IBM DB2 9.7

m Prototyped in a commercial proprietary database

m Prototyped in Apache Spark by UC Berkeley

m LIBGist v.1.0: Generalized Search Tree C++ Library by UC Berkeley (6K LOC)
(Predecessor of Generalized Search Tree (GiST) access method for PostgreSQL)

m LIBGist™ Prototype: Multi-version Generalized Search Tree C++ Library over
LIBGist supporting Indirection/LIDBlock/DeltaBlock (3K LOC)

m Data:

m TPC-H benchmark
m Microsoft Hekaton micro benchmark

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 9 /43

Indirection
oce

Indirection: Effect of Indexes in Operational Data Stores

TPC-H: all tables; Scale Factor: 20

06 Update (Base)

M -4 Update (Indirection)

Relative Execution Time

Number of Indexes

|
Substantially improving the update time ...

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 10 / 43

Indirection
oce

Indirection: Effect of Indexes in Operational Data Stores

TPC-H: all tables; Scale Factor: 20

1.2
1
o
E os
g -l Query (Base)
5 06 -o- Query (Indirection)
o
2 Update (Base)
ﬁ -4 Update (Indirection)
2> 04
S
K
&
0.2

0
7(PKs) 8 9 10 11 12 13 14 15 16 17
Number of Indexes

... Consequently affording more indexes and significantly reducing the query time

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 10 / 43

2VCC

Data Volume: MVCC Concurrency

Mohammad Sadoghi

L-Store ECS165a - 2020 11 / 43

2VCC

Introducing Multi-version Concurrency Control

w—

7 ~
Data Volume

(StorageArchitecture,
/I ndexing & Concurrency)

| ovee |
VLDB'14

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 12 / 43

2VCC

Generalized Concurrency Control: Volume Dimension

Observed Trends

In operational multi-version databases, there is a tremendous opportunity
to avoid clashes between readers (scanning a large volume of data) and
writers (frequent updates).

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 13 / 43

2VCC

Generalized Concurrency Control: Volume Dimension

Observed Trends

In operational multi-version databases, there is a tremendous opportunity
to avoid clashes between readers (scanning a large volume of data) and
writers (frequent updates).

Introducing a (latch-free) two-version concurrency control (2VCC) by
extending indirection mapping (i.e., central coordination mechanism) and
exploiting existing two-phase locking (2PL) in order to

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 13 / 43

2VCC

Generalized Concurrency Control: Volume Dimension

Observed Trends

In operational multi-version databases, there is a tremendous opportunity
to avoid clashes between readers (scanning a large volume of data) and
writers (frequent updates).

Introducing a (latch-free) two-version concurrency control (2VCC) by
extending indirection mapping (i.e., central coordination mechanism) and
exploiting existing two-phase locking (2PL) in order to
Decouple Readers/Writers to Reduce Contention
(Pessimistic and Optimistic Concurrency Control Coexistence)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 13 / 43

2VCC

2V-Indirection Indexing: Updating Records

LID: Logical IdentifierSS RID: Record Identifier

7

LID Inde

Indirection
Mapping

Recap: Indirection technique for reducing index maintenance

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 14 / 43

2VCC

2V-Indirection Indexing: Updating Records

LID: Logical Identifier cRID: Committed
SSD Record Identifier

uRID: Uncommitted

|
|

/ Record Identifier
|

7

LID Inde

HDD

' 2V-Indirection
Mapping

Extending the indirection to committed/uncommitted records

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 14 / 43

2VCC

2V-Indirection Indexing: Updating Records

LID: Logical Identifier cRID: Committed
SSD Record Identifier

uRID: Uncommitted

|
|

/ Record Identifier
|

4 |
|
LID Inde i o
H

Tail (append-only)

Extending the indirection to committed/uncommitted records

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 14 / 43

2VCC

2V-Indirection Indexing: Updating Records

LID: Logical Identifier cRID: Committed
SSD Record Identifier
V|
4,D || uRID: Uncommitted
| / Record Identifier
Iy
' |
*
|
4 |
|
LID Inde: o
HDD
\
1
y

Decoupling readers/writers to eliminate contention

Mohammad Sadoghi

C Davis) L-Store ECS165a - 2020 14 / 43

2VCC

2V-Indirection Indexing: Updating Records

LID: Logical Identifier cRID: Committed
SSD Record Identifier

uRID: Uncommitted

|
|

/ Record Identifier
|

7

@
LID Ind o .
ne HDD i Tail (append-only)

\, "

Decoupling readers/writers to eliminate contention

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 14 / 43

2VCC

2V-Indirection Indexing: Updating Records

LID: Logical IdentifierS

OOLF

B

LID Inde

cRID: Committed
Record Identifier

|

| uRID: Uncommitted

/ Record Identifier
| Implicit Indicator of

%Write-wme Conflicts

| Holding Read Counters
| (Latch-free Coordination)

Decoupling readers/writers to eliminate contention

Mohammad Sadoghi (

C Davis)

L-Store

ECS165a - 2020

14 / 43

2VCC

Overview of Two-version Concurrency Control Protocol

v

Growing Phase:
Acquiring Locks

|
Two-phase locking (2PL) consisting of growing and shrinking phases

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

2VCC

Overview of Two-version Concurrency Control Protocol

v

Growing Phase: Shrinking Phase:
Acquiring Locks Releasing Locks

|
Two-phase locking (2PL) consisting of growing and shrinking phases

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

2VCC

Overview of Two-version Concurrency Control Protocol

Growing Phase: Shrinking Phase:
Acquiring Locks Releasing Locks

|
Two-phase locking (2PL) consisting of growing and shrinking phases

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

2VCC

Overview of Two-version Concurrency Control Protocol

Growing Phase: Shrinking Phase:
Acquiring Locks Releasing Locks

|
Extending 2PL with certify phase

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

2VCC

Overview of Two-version Concurrency Control Protocol

S\\ared \ocks

Shrinking Phase:
Releasing Locks

Growing Phase:
Acquiring Locks

Certify Phase:
Upgrading Locks

|
Exclusive locks held for shorter period (inherently optimistic)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

2VCC

Overview of Two-version Concurrency Control Protocol

S\\ared \ocks
ntent

Update \

Shrinking Phase:
Releasing Locks

Growing Phase:
Acquiring Locks

Certify Phase:
Upgrading Locks

Exclusive locks held for shorter period (inherently optimistic)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020

15 / 43

2VCC

Overview of Two-version Concurrency Control Protocol

R
T
eg\)\a d\-oc
B 5“a‘e Exclusive
date \“‘e“t Locks
UP [(EENE)]

Shrinking Phase:
Releasing Locks

Growing Phase:
Acquiring Locks

Certify Phase:
Upgrading Locks

Relaxed exclusive locks to allow speculative reads (increased optimism)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020

15 / 43

2VCC

Overview of Two-version Concurrency Control Protocol

Blocking
Lock Waits
(counter + queue)

Shrinking Phase:
Releasing Locks

Growing Phase:
Acquiring Locks

Certify Phase:
Upgrading Locks

|
Trade-offs between blocking (i.e., locks) vs. non-blocking (i.e., read counters)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 15 / 43

Experimental Analysis

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 16 / 43

2VCC
oceo

2VCC: Effect of Parallel Update Transactions

Update Only Workload; High Contention
4096

1024

256
i Single-version
64 Multi-version

Improvement ratio
16

Update Execution Time in seconds
Improvement ratio

1 8 16 24 32 64
Number of Parallel Transactions

__|
Substantial gain by reducing the read/write contention & using non-blocking operations

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 17 / 43

2VCC
ooe

2VCC: Effect of Parallel Update Transactions

Lock Statistics Comparison; High Contention
4096
2048 -
1024

—+—Deadlock Ratio
=#-Number of Lock Waits Ratio
Lock Wait Time Ratio

Single-version to Multi-version Ratio
[e2}
B

1 8 16 24 32 64
Number of Parallel Transactions

__|
Substantial gain by reducing the read/write contention & using non-blocking operations

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 18 / 43

Data Volume: Coordination-free Concurrency

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 19 / 43

QueCC

Introducing Coordination-free Concurrency Control

w—

7 ~
Data Volume

(StorageArchitecture,
/I ndexing & Concurrency)

| |
\ QuecC /
Middleware 18
W
~ 7
— —-_—

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 20 / 43

QueCC

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 /43

QueCC

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 /43

QueCC

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 /43

QueCC

Confrontation-free Concurrency Control

Observed Trends

In operational databases, the use of pre-compiled stored procedures is
predominant. There is a tremendous opportunity to exploit transaction
prior knowledge to eliminate the need for coordination.

Is it possible to have concurrent execution over shared data (not limited to
partitionable workloads) without having any concurrency controls?

Introducing a queue-oriented, control-free concurrency (QueCC) based on
two parallel & independent phases of priority-driven planning & execution.
Execution and Synchronization Decoupling

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 21 /43

QueCC
.

Queue-oriented, Control-free Concurrency (QueCC)

Batching Client
Transactions

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 22 /43

QueCC
.

Queue-oriented, Control-free Concurrency (QueCC)

Planning Threads
(Pre-determined Priority)

2

Batching Client \;,
Transactions

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 22 /43

QueCC
.

Queue-oriented, Control-free Concurrency (QueCC)

Planning Threads
(Pre-determined Priority)

§ Main Memory
Batching Client a IIII DB Storage
Transactions
Index
High Priority Low Priority : :
]

Queues Queues

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 22 /43

QueCC
.

Queue-oriented, Control-free Concurrency (QueCC)

Planning Threads
(Pre-determined Priority)

§ Main Memory
Batching Client a DB Storage
Transactions
Index
High Priority Low Priority Execution
Queues Queues Queues
A

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 22 /43

QueCC
.

Queue-oriented, Control-free Concurrency (QueCC)

Planning Threads
(Pre-determined Priority)

§ | Execution Threads Main Memory
Client Transaction a E DB Storage
Queues IIII IIII - - -
- . . Index
Queues Queues Queues '

High Priority Low Priority Execution

|

Execution & Synchronization Decoupling: Deterministic priority-based planning
followed by queue-oriented execution

Mohammad Sadoghi C Davis) L-Store ECS165a - 2020 22 /43

Experimental Analysis

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 23 /43

© O ERMIA-SI_SSN *-* FOEDUS-MOCC e -o CICADA

Bl QUECC A A SILO @9 TICTOC

i 200w
2k 7
g\c
e=10f W™ R —
s ’ 3 2
s
Foosl-——eo— % 0 7
e
4 8 16 24 32
Worker Threads

8 16 24 32
Worker Threads

Avoiding thread coordination & eliminating all execution-induced aborts

Mohammad Sadoghi (UC Davis)

L-Store

ECS165a - 2020 24 / 43

Unifying OLTP and OLAP

Unifying OLTP & OLAP
EDBT'18, VLDBJ'16, ICDCS 16

- TN
Operational Data \
Volume & Velocity
I (Storage Architecture,
Indexing & Concurrency)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 25 /43

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 26 / 43

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 26 / 43

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 26 / 43

L-Store
°

Storage Layout Conflict

Read Optimized

Row-based Storage (compressed, read-only pages) (o|ymnar storage

: — s
P
I
I
I
Write Optimized — | | ‘

(uncompressed in-place updates)

|
Write-optimized (i.e., uncompressed & row-based) vs. read-optimized (i.e.,

compressed & column-based) layouts

Mohammad Sadoghi C Davis) L-Store ECS165a - 2020 27 / 43

- Intuition

Points to
Stable LIDs
(i.e., anchored RID)

RID; In-page Lineage Tacking

Tail Pages
(Append-only) Latest Base Pages
RIDe Version (Read-only)

(anchored RIDs)

=/

Lineage Mapping
(indirection layer, stable LID-to-RID mapping)

|
Physical Update Independence: De-coupling data & its updates

(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 28 / 43

- Intuition

Monotonically
Increasing Lineage
(updates are assigned RIDs
in an increasing order)

Points to
Stable LIDs
(i.e., anchored RID)

RID; In-page Lineage Tacking

Tail Pages
(Append-only) Latest Base Pages
RIDe Version (Read-only)

Append-only

=/

Lineage Mapping
(indirection layer, stable LID-to-RID mapping)

|
Physical Update Independence: De-coupling data & its updates

(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi

Davis) L-Store ECS165a - 2020 28 / 43

Monotonically

Increasing Lineage
(updates are assigned RIDs
in an increasing order)

RID;

Tail Pages
(Append-only)

RIDy

Latest
Version

Append-only
Updates
*

date

=/

Lineage Mapping
(indirection layer, stable LID-to-RID mapping)

Monotonically Increasing
In-page Lineage

Lazy Update

Consolidation
(snapshot reconstruction via lineage
mapping & in-page tracking)

Points to
Stable LIDs

(i.e., anchored RID)

In-page Lineage Tacking

Base Pages
(Read-only)

In-page Lineage Tacking

Remain Unchanged
(stable reference, anchored RIDs)

Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi

Davis)

L-Store

ECS165a - 2020

28 / 43

Columnar Storage

—— Base Pages
I I I " (read-only)
L] &
—U
= Tail Pages
S o (append-only)
§ —
a L
o e =
[+7) —1
o —I 1
a —
D D ! Range
‘ Partitioning
Record

(spanning over a set of aligned columns)

Overview of the lineage-based storage architecture
(base pages and tail pages are handled identically at the storage layer)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 29 / 43

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

i
o
o
JURE] e
|

Base Pageé
(read-only)

Columnar Storage

|
Records are range-partitioned and compressed into a set of ready-only base pages

(accelerating analytical queries)

Mohammad Sadoghi

L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Detailed Design

Read Optimized

Updated Columns
. (compressed, read-only pages)

N\

N LY
e ez (D
== Jong

RN bl |

/ Base Page;
Tail Pages (read-only)
(append-only)

|
Recent updates for a range of records are clustered in their tails pages

(transforming costly point updates into an amortized analytical-like query)

Mohammad Sadoghi C Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Detailed Design

Read Optimized

Updated Columns
. (compressed, read-only pages)

N Different Versions
| of the Record

Tail Record y — ‘ —\ = R e W
(latest version) ’_L‘ - [ﬁ W (Blgse Reco.rd ’
older version!
Write Optimized D D I I
essed, append-only updi;)

Base Page;

Tail Pages (read-only)
(append-only)

|
Recent updates for a range of records are clustered in their tails pages

(transforming costly point updates into an amortized analytical-like query)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

Pre-allocated Space

o)
N
)

/ Base Page;
Tail Pages (read-only)
(append-only)

N\

|
Recent updates are strictly appended, uncompressed in the pre-allocated space

(eliminating the read/write contention)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

Indirection Column -
(back pointer to the previous version)

Fm = I == 425 ﬁ ﬁ:I:I:
=, U -
Forward Pointer to the [
Write Optimized Latest Version of the Record
essed, append-only upd.

—)

HD m -
Indirection Column
(uncompressed, in-place update)

'
Achieving (at most) 2-hop access to the latest version of any record

(avoiding read performance deterioration for point queries)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

Indirection Column -
(back pointer to the previous version)

F N s s

= = = Nl
[] U

Write Optimized New Version D D I I

essed, append-only updi;)

=l (i
L

e o -

Indirection Column
(uncompressed, in-place update)

'
Achieving (at most) 2-hop access to the latest version of any record

(avoiding read performance deterioration for point queries)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

Indirection Column -
(back pointer to the previous version)

e = =
= = =] Nl
Backward VC L] U ﬁ:l:l:]

Pointer - ¥ =
Write Optimized New Version D D I I

essed, append-only upd.

=l (i
L

e o -

Indirection Column
(uncompressed, in-place update)

Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Contention-free Merge

Read Optimized
(compressed, read-only pages)

) m — — O\
] /I ’ ‘ﬁ W
C - Id L
Write Optimized D D I I
essed, append-only updi;)
D I D I@ o Indirection Column
(uncompressed, in-place update)

Merge Queue
(tail pages to be merged)

I

I
[
[
[
J

Consecutive Set of
Committed Updates

[
—

[
[
[

[

J

Contention-free merging of only stable data: read-only and committed data
(no need to block on-going and new transactions)

Mohammad Sadoghi C Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Contention-free Merge

Asynchronous Lazy Merge Read Optimized
i ives upd:) (compressed, read-only pages)

ted
-
: = 777[;\:' = = Ail/i\\w'jr

- &=
Write Optimized 7 — D D I I
essed, append-only upd)

=" po
N |

D I D IO Indirection Column
(uncompressed, in-place update)

Merge Queue
(tail pages to be merged)

Lazy independent merging of base pages with their corresponding tail pages
(resembling a local left outer-join of the base and tail pages)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Contention-free Merge

Asynchronous Lazy Merge Read Optimized
t itted ives upd:) In-page, Independent (compressed, read-only pages)

e w2 L |
B LI | |
= [joeny

|

Indirection Column
(uncompressed, in-place update)

I

I
[
[
[
[
J

[
—

[
[
[

[

J

Independently tracking the lineage information within every page
(no need to coordinate merges among different columns of the same records)

Mohammad Sadoghi C Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Epoch-based Contention-free De-allocation

— — Read Optimized
_— Page Directory ———__ (compressed, read-only pages)

t /

Epoch-based De-allocation
(longest running query) —

L
Write Optimized . = = = -
etz w1] | (o0
!

EIELLT

Asynchronous Lazy Merge L

N Indirection Column
X I = (uncompressed, in-place update)
N

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Epoch-based Contention-free De-allocation

— — Read Optimized
_— Page Directory ———__ (compressed, read-only pages)

’
/f

Epoch-based De-allocation
(longest running query)

Write Optimized /) = = = — \\:
nomareses oot smrovsse || (@ 1001
= X _ In-page, Independent

L]

R — D D I I Lineage Tracking

Indirection Column
(uncompressed, in-place update)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi

C Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Epoch-based Contention-free De-allocation

B _— Read Optimized
_— Page Directory ———__ (compressed, read-only pages)

— — /N
ML |
{nn ! g L
Write Optimized /) = = = — N
e ZEEeel][00
) 0 -
L]

L

Epoch-based De-allocation
(longest running query) —

EIELLT

Asynchronous Lazy Merge L g |
7 Indirection Column
> D = % (uncompressed, in-place update)
%
%
|
Contention-free page de-allocation using an epoch-based approach

(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Epoch-based Contention-free De-allocation

_— T Read Optimized
_— Page Directory ———__ (compressed, read-only pages)

A= m — — =N\
L .) T L VI
) O J

Epoch-based De-allocation { g —

(longest running query) = D D I I
Write Optimized /) = = = — %
(i d, append-only updates) | || | I]DII
) 0 -
L]

EIELLT

Asynchronous Lazy Merge L
Indirection Column

D > D = (uncompressed, in-place update)
%
|
Contention-free page de-allocation using an epoch-based approach

(no need to drain the ongoing transactions)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 30/ 43

L-Store
°

L-Store: Epoch-based Contention-free De-allocation

— T Read Optimized
_— Page Directory ———__ (compressed, read-only pages)

iz
f
3

A

Epoch-based De-allocation
(longest running query) =

In-page, Independent

- D D I I I Lineage Tracking

Write Optimized] = = = [
e 22] ey
) L
U

EIELLT

Asynchronous Lazy Merge

7 Indirection Column
D X D = (uncompressed, in-place update)

|
Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi

C Davis) L-Store ECS165a - 2020 30/ 43

Evaluation

Experimental Analysis

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 31/43

Evaluation
°

Experimental Settings

m Hardware:
m 2 X 6-core Intel(R) Xeon(R) CPU E5-2430 @ 2.20GHz, 64GB, 15 MB L3 cache

m Workload: Extended Microsoft Hekaton Benchmark

m Comparison with In-place Update + History and Delta + Blocking Merge
Effect of varying contention levels
Effect of varying the read/write ratio of short update transactions
Effect of merge frequency on scan
Effect of varying the number of short update vs. long read-only transactions
Effect of varying L-Store data layouts (row vs. columnar)
Effect of varying the percentage of columns read in point queries
Comparison with log-structured storage architecture (Leve/DB)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 32 /43

Evaluation
°

Effect of Varying Co tion Levels

2
—8—|-Store —o—L-Store

- 0.8 In-place Update + History Q) In-place Update + History
g : Delta + Blocking Merge § 1.5 Delta + Blocking Merge
s 06 =
5 31
2
£ 0.4 Eﬂ
3 2 o5
5 0.2 ¥ s Y .

0 0

0 5 10 15 20 25 0 5 10 15 20 25
Number of Parallel Short Update Transactions Number of Parallel Short Update Transactions

Achieving up to 40x as increasing the update contention

Mohammad Sadoghi

Davis) L-Store ECS165a - 2020 33 /43

Evaluation
°

Effect of Merge Frequency on Scan Performance

Mixed OLTP + OLAP Workload; Low Contention
(1 Scan + 1 Merge Threads, Page Size = 32 KB)

M Scan Performance

1.5 (4 Update Threads)
1 M Scan Performance
(14 Update Threads)
0.5 I I
0 7!, | 1 -,.] .
4K 8K 16K 32K 64K

Number of Tail Records Processed per Merge

Scan Execution Time (in seconds)

__|
Merge process is essential in maintaining efficient scan performance

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 34 /43

Evaluation
°

Effect of Mixed Workloads: Update Performance

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

M Lineage-based Data
Store (L-Store)

M In-place Update +
0.4 History
0.2 I M Delta + Blocking
Merge
o Aml_Hum Hum HEm Hillm
1 4 8 12 16

Number of Parallel Update Transactions

Update Throughput (million of txn/s)

__|
Eliminating latching & locking results in a substantial performance improvement

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 35 /43

Evaluation
°

Effect of Mixed Workloads: Read Performance

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

800
M Lineage-based Data

Store (L-Store)

600
M In-place Update +
400 History
200 W Delta + Blocking
II I Merge
o lmm_. HEN NEN HNEN HNEN
1 5 9 13 16

Number of Parallel Read-only Transactions

Read Throughput (txn/s)

__|
Coping with tens of update threads with a single merge thread

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 35 /43

Vision

Decentralized & Democratic Data Platform

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 36 / 43

Vision
.

Data Management Challenges at Microscale

Extract-Transform-Load
(ETL)

ourp
(Write-optimized)

OLAP
(Read-optimized)

S walmart

OLTP and OLAP data are isolated at microscale

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 37 /43

Vision
.

Recap: Data Management Challenges at Microscale

= J OLAP+OLTP
V (Read & Write-
Reports optimized)

Walmart

First step is to unify OLTP and OLAP

Mohammad Sadoghi (UC Davis) L-Store

ECS165a - 2020

37 /43

Vision
.

Platform Scaling: Data Partitioning

-
Data Partitioning

(within in a data center)

0
)
)
|
0

Ul
= J OLAP+OLTP
V (Read & Write-

Reports optimized)

Walmart

Moving towards distributed environment

Mohammad Sadoghi

Davis) L-Store ECS165a - 2020 37 /43

Vision
.

Platform Scaling: Non-blocking Agreement Protocols

First Transmit and then Commit
(Message Redundancy)

— Data Partitioning
W {withiniin a data center)

; i -~
;ﬂ J OLAP+OLTP

\1', (Read & Write-
Reports optimized)

Walmart

I ——
Message redundancy vs. latency trade-offs [EasyCommit, EDBT'18]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 37 /43

Central Control: Data Gate Keeper

7%

\W\ 4

OLAP+OLTP
(Read & Write-
optimized)

Walmart

Vision
°

Conform to trusting the central authority and governance

Mohammad Sadoghi (UC Davis) L-Store

ECS165a - 2020

38 /43

Vision
°

Decentralized Control: Removing Data Barrier

OLAP+OLTP
(Read & Write-
optimized)

Walmart

Seek trust in decentralized and democratic governance [PoE (under submission)]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 38 /43

Vision
°

Democratic Control: Removing Trust Barrier

OLAP+OLTP
(Read & Write-
optimized)

Walmart

Seek trust in decentralized and democratic governance [PoE (under submission)]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 38 /43

Vision
°

Global-scale Reliable Platform over Unreliable Hardware

- —
R - Data Partitioning

W (vithinin a data center)

~__
OLAP+OLTP

(Read & Write-
optimized)

Walmart

Self-managed infrastructure

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 /43

Vision
°

Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read & Write-
optimized)

Walmart

Cloud-managed infrastructure (trust the provider)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 /43

Vision
°

Global-scale Reliable Platform over Unreliable Hardware

OLAP+OLTP
(Read & Write-
optimized)

Walmart

Cloud-managed infrastructure (trust the provider)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 /43

Vision
°

Global-scale Reliable Platform over Unreliable Hardware

/>

TETTTTTOTTTIOOTT IO

~_
OLAP+OLTP
(Read & Write-
optimized)

Walmart

__|
Light-weight, fault-tolerant, trusted middleware [Blockplane, (under submission)]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 /43

Vision
°

Global-scale Reliable Platform over Unreliable Hardware

e

TETTTTTTTTTTTROOOTOTTOES

~_
OLAP+OLTP
(Read & Write-
optimized)

Walmart

___|
Fault-tolerant protocols vs. consistency models [MultiBFT, GeoBFT (under submission)]

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 39 /43

Vision
°

ExpoDB: Exploratory Data Platform Architecture

Application Layer / Testbed (YCSB, SYCSB, TPC-C Benchmarks)]

} l Enable/Disable Secure Transactions ||
B} |
(et
| |) / . AN
N v Execution Threads N
| = | « >
—— e Al T
5 655 59 — N -)
Block Creator | N /" Message/lO Queues
(Distributed Ledger) { ¥ | e
‘ ‘ ‘Commit Protocols:
Crypto Toolkit -ogging (e Q-Store, 2PC, 3PC, Calvin, EasyCommic)

A decentralized & democratic platform to unify OLTP and OLAP

Mohammad Sadoghi

Davis) L-Store ECS165a - 2020 39 /43

Conclusions

I[@ Conclusions

Mohammad Sadoghi

Davis) L-Store ECS165a - 2020 40 / 43

Conclusions
®0

Contributions & Outlook

/

ExpoDB: Decentralized & Democratic Platform

* Decentralized & Democratic Control: PoE, MultiBFT, GeoBFT [under submission]
* Reliability over Unreliable Hardware: Blockplane [under submission]

Operational Data Stores: Velocity & Volume

* Index Maintenance: Indirection Technique [VLDB’13, VLDBJ'16]

* Concurrency Control: 2VCC Technique [VLDB’14, Middleware’16], EasyCommit [EDBT’18], QueCC [Viddleware’18]
 Hybrid Storage: Enhancing Key-Value Store [VLDBE’12, ICDE"14]

* Real-time OLTP+OLAP: Lineage-based Data Store (L-Store) [EDBT-18,ICDCS’16, 30+ Patents]
Stream Processing: Velocity
¢ High-dimensional Indexing: BE-Tree [SIGMOD’11, TODS’13], Compressed Stream Processing [ICDE’14]
« (Distributed) Top-k Indexing: BE*-Tree [ICDE’12, ICDCS’13, Middleware’17, ICDCS'17]

¢ Hardware Acceleration: FPGAs [VLDB’10, ICDE’12, VLDB’13, ICDE’15, SIGMOD Record’15, ICDE’16, USENIX ATC’16, ICDCS’17, ICDE’18]
* Novel Mappings: XML/XPath [EDBT’11], Distributed Workflow [TDKE’15, SIGMOD’15, ICDE’16, Middleware’16]

Mohammad Sadoghi

Davis) L-Store ECS165a - 2020 41 /43

Conclusions
oce

Questions?
Thank youl!

Exploratory Systems Lab (ExpolLab)
Website:

. 00
Y Expolab AN
Creativity Unfolded CxpoDf

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 42 / 43

References

Related Publications (Patents Omitted)

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2020 43 / 43

	Data Velocity: Index Maintenance
	Data Volume: MVCC Concurrency
	Data Volume: Coordination-free Concurrency
	Combining Volume & Velocity: Lineage-based Storage Architecture
	Decentralized & Democratic Data Platform
	Conclusions
	References

