S 1 I e
@IQO@E‘ o

19th Eﬂ,"@“ -

ACM/IFIP g [o]

International
Middleware
Conference

L-Store Concurrency Control: QueCC

Slides are adopted from Qadah, Sadoghi

QueCC - A Queue-Oriented, Control-Free Concurrency Architecture, ACM Middleware 2018

ECS 165A — Winter 2021

Mohammad Sadoghi

Exploratory Systems Lab
Department of Computer Science

, | UCDAVIS

UNIVERSITY OF CALIFORNIA

Expolab

Creativity Unfolded

@ ResilientDB

S
Hardware Trends

h Large core counts i L arge main-memory

HPE Superdome Server
144 physical cores
o1B of RAM

*Image source: https://www.hpe.com/us/en/servers/superdome.html

Popularity of Key-value Stores

sriak

® No multi-statement

transactions AEROSPIKE
¢ \Weak consistency redis
amazon
DynamoDB
ORACLE
® \\eak isolation NOSQL DATABASE

Project Voldemort
@ A distributed database.

High-Contention Workloads

High number of
contented operations

AN

Challenge ?77?

R

State-of-the-Art Concurrency
Control Protocols

Class

Optimistic

SILO e

SOSP ‘13
® Optimized for multi-core

hardware and main- TIcToc ~ /mestamp o~ 1o s

Ordering
memory datalbases
FOEDUS- Optimistic VLDB “16
L MOCC CC
® Non-deterministic
ERMIA MVCC SIGMOD ‘16

Cicada MVCC SIGMOD ‘17

Transaction Processing on Modern Hardware, M. Sadoghi and S. Blanas

Performance Under High-Contention

80| |[©© ERMIA-SI SSN &= NO_WAIT C;)
2.0 % % FOEDUS-MOCC A A SILO R
' o o CICADA ¢ 1cToc | ,°
=R 60 |
a& 1.5 <
=
tg:n.g 1.0 g 40}
o= YT
mE
0.5 201
0.0 . . .- . 0} 4 S . T
0.0 0.4 0.8 0.9 0.99 0.0 0.4 0.8 0.9 0.99

Zipfian Theta (0) Zipfian Theta (0)

~ Optimize-for-multi-core concurrency control techniques suffer

| under high-contention due to increasing abort rate

i

Performance Under High-Contention

80}
|% % FOEDUS-MOCC A A SILO
e o CICADA @9 TICTOC

g
=)

. ' (D
(O ERMIA-SI SSN e No_wml

=3 oo g
=4’ 1.5} | j ’
Iy
o o
8.9 1 O
o= YT
=P}
0.5
01] S S S — 4 ;
0.0 0.4 0. 0. 0.99 0.0 0.4 0.8 0.9 0.99
Zipfian Theta (0) Zipfian Theta (0)

, Under high-contention: Non-deterministic aborts
: dominates

Performance Under High-Contention

% % FOEDUS-MOCC A A SILO

| [©© ERMIA-SI SSN =< NO WAIT [w

g
=

|e e cicapa ¢ 1croc ¢
; ‘ ; Ry
28 150
= 3
or |
o= 1.0¢
=3

o
wl

H

- :

R T T e 1), —
0.0 0.4 0. 0. 0.99 0.0 0.4 0. 0. 0.99

Zipfian Theta (0) Zipfian Theta (0)

» Under high-contention: Non-deterministic aborts
: dominates

—

2PL - NoWait

Abort Count: O ‘ = * / — —
| Worker (>
Thread #1 o~ —

Client Transactions 3

wa(o) (el w(0) | r+(a) o
| r4(d) FreEP] ro(a) | wi(b) f
; C

transaction

| Worker d
| each color presents a Thread #2 6 \ //

—

2PL - NoWait

Abort Count: O ‘ = * / — —
— Worker (@) (>
Thread #1 wi(0) S~ _—

| Client Transactions

d

wa(o) [wa(d) | b
ra(d) [Frs(C) ‘ ,

C

wa(o) g

ro(a) \

Worker
Thread #2

10

—

2PL - NoWait

Abort Count: O ‘ = * / — —
— Worker @) § (>
' Thread #1 wi (o) IS~

| Client Transactions

8 -
wa(o) PWa(o) | 8 N
N

Worker
' Thread #2

r4(d) Prs(c)

o |

wa(b) i

ro(a)

11

—

2PL - NoWait
Worker e

- Thread #1

Abort Count: O

r1(a)

w1 (D)

| Client Transactions

w(o) Aa(d)

r4(d) |Nre(C)

wa(b) i

ro(a)

Worker
- Thread #2

12

—

2PL - NoWait
Worker e

- Thread #1

Abort Count: O

r1(a)

w1 (D)

| Client Transactions

w(o) Aa(d)

conflict!

r4(d) |Nre(C)

wa(b) i

ro(a)

Worker
- Thread #2

13

2PL - NoWait -

i Abort transaction (to avoid potential deadlocks)

Abort Count: O ‘ |
| Worker | (
' Thread #1 | eSS—
~ Client Transactions 8 .
88 o

wa(b) PWa(o)

ra(d) [S(C)

O

wa(b) i

Worker
Thread #2

14

—

2PL - NoWait

Abort Count: 1 ‘ = * / — —
| Worker | (>
Thread #1 | _——

i" Client Transactions | i a
- -
r3 '
‘ | C
Worker w2 (o) |l Vf d
‘Thread #2 6 N -

15

—

2PL - NoWait

Abort Count: 1 ‘ = * / — —
— Worker (o) | (>
' Thread #1 "3(C) | _—

i" Client Transachons | i q
3 o 8 ¢
| -~ C
Worker wa(b) | 'f J
Thread #2 e N - 4/

16

—

2PL - NoWait
Worker 6

- Thread #1

Abort Count: 1

wa(b)

r3(C)

Client Transachons

wa(b)

Worker
Thread #2

17

—

2PL - NoWait
Worker 6

- Thread #1

Abort Count: 1

wa(b)

r3(C)

Client Transachons

conflict!

wa(b)

Worker
Thread #2

18

2PL - NoWait -

& Abort transaction (to avoid potential deadlocks)

Abort Count: 1 ‘ |
| Worker (
- Thread #1 oSS~
~ Client Transactions 8 .
58 -

wa(D) r1(a)
Zi(e) Wl(e)

O

wa(b)

Worker
Thread #2

19

—

2PL - NoWait

Abort Count: 2 ‘ = * / — —
| Worker | (>
Thread #1 o~ —

Client Transachons

wa(o
ra(C

ol

wa(b) i

Worker
Thread #2

20

—

2PL - NoWait

Abort Count: 2 ‘ = * / — —
— Worker s | (>
' Thread #1 r4(d) e

| Client Transactions

ws(D) ri(a)
r3(C) w1(b)

o |

wa(b) i

ro(a)

Worker
' Thread #2

21

—

2PL - NoWait

Abort Count: 2 ‘ = * / — —
— Worker s | (>
' Thread #1 r4(d) | _—

o Client Transactions i q
wa(b) r1(a) 8 N
r3(C) w1(b) ,
‘ | C
Worker wa(b) | 'f J
- Thread #2 6 2(a) \ /

22

—

2PL - NoWait
Worker e

- Thread #1

Abort Count: 2

W4(b) |

r4(d)

| Client Transactions

w3(b) ri(a)
r3(C) wi(b)

wa(b) i

ro(a)

Worker
- Thread #2

23

—

2PL - NoWait
Worker e

- Thread #1

Abort Count: 2

W4(b) |

r4(d)

| Client Transactions

w3(b) ri(a)
r3(C) wi(b)

conflict!

wa(b) i

ro(a)

Worker
- Thread #2

24

2PL - NoWait -
i Abort transaction (to avoid potential deadlocks)

Aport Count: 2 | | .
| Worker | (>
' Thread #1 S~ —

o Client Transactions i a
ws(b) r1(a) 88 b
r3(C) w1 (D) | ,
‘ | C
Worker wa(o) i 'f J
‘Thread #2 6 Nl -

25

—

2PL - NoWait
Abort Count: 3 ‘ T ’ / T
'‘Thread #1 o~ —
Client Transactions | i 3

wa(o) pws(o) r1(a)
| r4(d) |PEs(C) wi(b)

Worker ? | d
' Thread #2 e \ /

- Committed Transactions

wa(b)

ro(a)

26

—

2PL - NoWait
Abort Count: 3 ‘ = * / — —
Thread #1 "3(C) o~ —
"~ Client Transactions | i a
r1(a)
w1(D) ,
‘ | C
Worker wa(b) i Vf d
‘Thread #2 6 N -

- Committed Transactions

wa(b)

ro(a)

27

—

2PL - NoWait

Abort Count: 3 ‘ = * / — —
B Worker (o) (>
' Thread #1 "3(C) e

. Client Transactions i q
wi1(D) | : 7
‘ | C
Worker wa(o) | 'f J
Thread #2 e N - 4/

- Committed Transactions

wa(b)

ro(a)

28

—

2PL - NoWait

Abort Count: 3 ’
\Worker walb) |
' Thread #1 r3(C)
o Client Transactions |
r1(8) conflict! =
w1() |
| . C
Worker wa(b) | ' a
Thread #2 e S —

- Committed Transactions

wa(b)

ro(a)

29

—

2PL - NoWait

Abort Count: 3 ‘ = * / — —
B Worker (o) (>
' Thread #1 "3(C) e

| Client Transactions i a
w1 (D) | : ,
C
Worker wa(o) |t J
' Thread #2 e ?1(s) \ /
| Abort transaction (to avoid potential deadlocks) | | Committed Transactions

wa(b)

ro(a)

30

—

2PL - NoWait
Worker 6

- Thread #1

Abort Count: 4

wa(b) ||

r3(C)

|

| Client Transactions

wa(b) ri(a)
| ra(d) wi1(D)

Worker ? | a
' Thread #2 6 \ /

| Committed Transactions

wa(b)

ro(a)

31

—

2PL - NoWait

Abort Count: 4 :
Worker W) |
- Thread #1 r3(c)
- Client Transactions |
wa(b)
gi(e) ,
| | C
Worker ri(@) V? d
‘Thread #2 6 N -

- Committed Transactions

wa(b)

ro(a)

32

—

2PL - NoWait
Abort Count: 4 ‘ = * / — —
Thread #1 "3(C) o~ —
o Client Transactions | & a
o * S b
Zi(e) |) ,
‘ | C
Worker @) W : d
‘Thread #2 6 N -

- Committed Transactions

wa(b)

ro(a)

33

—

2PL - NoWait

Abort Count: 4 ‘ — : | .
| Worker wa(o) | (
' Thread #1 "3(C) | T

| Client Transactions

v

wa(b)

r4(d)

8 o
Worker alcl | d
' Thread #2 6 \‘ s

- Committed Transactions

wa(b)

ro(a)

—

2PL - NoWait

Abort Count: 4 ‘ — : | .
| Worker wa(o) | (
' Thread #1 "3(C) | T

| Client Transactions

v

d

wa(b)

r4(d) | 7
- 8 -
Worker r(a) W d

' Thread #2 6 \‘ s

- Committed Transactions

wa(b)

ro(a)

—

2PL - NoWait

Abort Count: 4 *
Worker ws(o) o
- Thread #1 r3(C)
. Client Transactions |
Wa(b) conflict! ==
r4(d)
Worker (@) |
Thread #2

- Committed Transactions

wa(b)

ro(a)

36

—

2PL - NoWait

Abort Count: 4 ‘ — : | .
| Worker wa(o) | (
' Thread #1 "3(C) | T

| Client Transactions

\\//

5 W
8

wa(b)

r4(d)

C
Worker sl | o d
' Thread #2 wi(0) \ /
| Abort transaction (to avoid potential deadlocks) | | Committed Transactions

wa(b)

ro(a)

o

2PL - NoWait
Abort Count: 5 ‘ i ’ / T
Thread #1 S~ —
Client Transactions | i 3

wa(b) ri(a)
| r4(d) w1 (D)

Worker ? a
' Thread #2 e \ /

- Committed Transactions

Wa(o) w2 (D)

3(C) | r2(a)

38

o

2PL - NoWait
Abort Count: 5 ‘ i ’ / T
— Worker il (>
Thread #1 wi(o) S~ —
o Client Transactions | i 3

C
Worker wa(D) | d
' Thread #2 6 N s

- Committed Transactions

Wa(o) w2 (D)

3(C) | r2(a)

39

2PL - NoWait

Abort Count: 5

Worker
- Thread #1

Client Transactions ‘ ' a

C
Worker w \ d
| Thread #2 ~ | /
@ Eventually transactions commit in some serial order! - Committed Transactions

@ Many aborts due to high contention on record b
wa(b) ri(a) wa(b)
- @ Non-determinism in CC cause these aborts
ra(d) wi(b) ro(@)

- @ Wasted work

40

Key Insights

e Many aborts due to high contention

e Non-determinism in CC cause these aborts

e Can we do better?

e |s it possible to eliminate non-deterministic
concurrency control from transaction
execution?

41

Deterministic Transaction
Execution

H-Store [Kallman et al. ’08]

Designed and optimized for horizontal scalability, multi-core
hardware and in-memory databases

Stored procedure transaction model
Static partitioning of database
Assigns a single core to each partition

Execute transaction serially without concurrency control within
each partition

42

C Plis assigned to
rstore Worker Thread #1

Abort Count: O ‘ = * / — —
| Worker | (>
Thread #1 o~ —

— : === - - |
| Client Transactions | 3 |
' R — P1
| b |
e]
] | C |
| ! P2
| | Worker | | d |
| a1
Single-partition Thread #2 \ /
transactions .

P2 is assigned to
Worker Thread #2

43

—

H-Store
Abort Count: O ‘ = * / — —

Thread #1 wi(0) o~ —

: ~ r—— = = = —

| Client Transactions | 3 |

| | |

. , P1|

wa(d) (Wa(d) | o |

ra(c) re(@) e

| C |

| ’ - p2!

Worker wa(c) d |

I _I
“Thread #2 e o N

- Committed Transactions

44

—

H-Store
Worker 6

- Thread #1

Abort Count: O

| Client Transactions

() aa(d)

r4(c) [rs@)

Worker
- Thread #2

- Committed Transactions

wa(c) | r1(a)

ro(d) | w1(b)

45

—

H-Store

Abort Count: O -
Worker wa(b)
- Thread #1 r3(a)
o Client Transactions |
Worker wa(d) i
‘Thread #2

- Committed Transactions

wa(c) | r1(a)

ro(d) | w1(b)

46

—

H-Store
Worker e

- Thread #1

Abort Count: O

| Client Transactions

Worker
- Thread #2

Wa(B)| wo(c) | ri(a)

3@ | ro(d) |wi(b)

—

H-Store

Abort Count: O

Worker
- Thread #1

| Client Transactions

Worker
- Thread #2

Wa(o){ w2(C) | ri(a)

3@ | ro(d) |wi(b)

(@ Performs well only when transactions are single—partitioned]

Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload

- |®@® H-Store

N

W

Throughput
(Million TPS)
— N

L 9 —9o o ¢
0 1 5 10 20 50 80 100
% of Multi-partition transactions

-

H-Store is sensitive to the percentage of multi-partition transactions
‘ in the workload

Can We Do Better?

Our motivations are
o [Efficiently exploits multi-core and large main-memory systems
e Provide serializable multi-statement transactions for key-value stores
e Scales well under high-contention workloads
Desired Properties
e (Concurrent execution over shared data
e Not limited to partitionable workloads

e \Without any concurrency controls

50

IS it possible to have concurrent execution over shared

data without having any concurrency controls?

51

Introducing: QueCC

Queue-Oriented, Control-Free, Concurrency Architecture

A two parallel & independent phases of priority-driven planning & execution

Phase 1: Deterministic priority-based planning of transaction operations in parallel
= Plans take the form of Prioritized Execution Queues
= Execution Queues inherits predetermined priority of its planner

= Results in a deterministic plan of execution

Phase 2: Priority driven execution of plans in parallel
= Satisfies the Execution Priority Invariance

“For each record (or a queue), operations that belong to higher priority queues
(created by a higher priority planner) must always be executed before executing any
lower priority operations.”

52

S
QueCC Architecture

i Priority-based Parallel Planning Phase
|

Batching Client
Transactions

53

S
QueCC Architecture

Priority-based Parallel Planning Phase

Planning Threads
(Pre-determined Priority)

Batching Client) |
Transactions S IIII IIII

High Priority Low Priority
Queues Queues

| Main Memory
DB Storage

Index

—_———

54

D
QueCC Architecture

Priority-based Parallel Planning Phase

Planning Threads
(Pre-determined Priority)

| § § | IIII | Main Memory
. . | -~ DB Storage
Batching Client) g) |
Transactions | IIII IIII I I I I 7 —
F Index
High Priority Low Priority Execution
Queues Queues Queues

55

D
QueCC Architecture

i Queue-oriented Parallel Execution Phase
|

Planning Threads
(Pre-determined Priority)

d |||

| g § Execution Threads | Main Memory
. . | -~ DB Storage
Batching Client) |) | ‘ ' _.__),
Transactions | ' IIII IIII | | § § § :
F | - ' | Index
High Priority Low Priority Execution
Queues Queues Queues

56

- QueCC || Abort Count: O

Planning
Thread #2

Client Transachons

) pwa(e)] wo(b) | ri(a
r3(C wi(b
Planning e |

Thread #1

Priority Groups

Low-priority
Queues

High-priority

Queues

Committed Transactions

57

- QueCC || Abort Count: O

Planning wa(o)
Thread #2

Client Transachons

Planning
Thread #1

Priority Groups

Low-priority
Queues

High-priority

Queues

- Committed Transactions

58

- QueCC || Abort Count: O

Planning
Thread #2

Priority Groups

Low-priority
Queues

Client Transachons

Planning 6

Thread #1

w1(b)

High-priority
Queues

Committed Transactions

59

- QueCC || Abort Count: O

Planning wa(b)

’z

Thread #2

ra(d)

Client Transactions

Planning wa2(b)

Y

Thread #1

ro(a)

Priority Groups

Low-priority
Queues

w1(b)

High-priority

Queues

Committed Transactions

60

~ QueCC Abort Count: O

Planning
Thread #2

Priority Groups

Low-priority
Queues

Client Transactions

Planning 6

Thread #1

Prioritized Execution

Queues

High-priority
Queues

Committed Transactions

61

‘ QueCC || Abort Count: O |

Execution e

Thread #2

Priority Groups

Low-priority
Queues

Client Transactions

Execution e

Thread #1

wa (D)

w1(b)

High-priority
Queues

- Committed Transactions

62

 QueCC || Abort Count: O

Execution
Thread #2

T

wa(b)

Priority Groups

Low-priority
Queues

Client Transactions

Execunon
/’ Thread #1

ro(a
ri(@

Execution Priority

Invariance

High-priority
Queues

- Committed Transactions

63

 QueCC || Abort Count: O = —
| | | Priority Groups

Low-priority

Queues (>

Execution 6

Thread #2

| Client Transactions

Execution e

/1| Thread #1

High-priority
Queues

Execution Priority

Invariance

64

 QueCC || Abort Count: O

Execution
Thread #2

Priority Groups

Low-priority
Queues

| Client Transactions

Execunon
/" Thread #1

r

Execution Priority

Invariance

High-priority
Queues

- Committed Transactions

- QueCC Abort Count: O \—-

| Priority Groups

Low-priority

Queues (>

. Client Transactions i a

Execution

6 wao) |

Thread #2

Execution e

Thread #1

High-priority
Queues

66

- QueCC Abort Count: O \—-

| Priority Groups

Low-priority

Queues (>

. Client Transactions i a

Execution

6 wao) |

Thread #2

Execution
Thread #1

| e Ay
r4(d)

High-priority
Queues

67/

| quecC || Aoort Count: 0 | —
! | | Priority Groups

Low-priority

Queues (>

Client Transactions i a

Execution

L

Thread #2

Thread #1

- | | d
Execution e | | _//

High-priority
Queues

~ QueCC Abort Count: O —
| | | Priority Groups

Low-priority

Queues (>

Execution i d
Thread #1 |

Execution 6

Thread #2

High-priority
Queues

ResilientDB Blockchain Fabric

Application Layer / Testbed (YCSB, SYCSB, TPC-C Benchmarks)

Enable/Disable Secure Transactiohs

E

| | Consensus Protocols (GeoBFT, PoE, RCC, Delayed
‘ Replication, ByShard, RingBFT,
1 Zyzzyva, Bitcoin-NG, PoW, PBFT, RBFT)

Concurrency Control Protocols

(2PL, QueCC, 2VCC, DORA, MVCC, Timestamp,
H-Store, NoWait, Silo, Foedus, MOCC, TicToc, Cicada)

3

Y4

=
Transaction

Manager

A4
pa
m
A

Block Creator
(Distributed Ledger) §

Loggin
Crypto Toolkit Jame

—>

I -
Execution Threads \i i

N

A \I\\ =

[

Message/lO Queues

Commit Protocols:

(Q-Store, 2PC, 3PC, Calvin, EasyCommit)

)

|

Storage Layer: Lineage-based Storage Archltecture

\

e B

Fault-tolerant Distributed Transactions on Blockchain., S. Gupta, J. Hellings, M. Sadoghl

ResilientDB

https: ithub.com/resilientdb
https://resilientdb.com/

70

https://github.com/resilientdb/
https://resilientdb.com/

Evaluation Environment

Microsoft Azure instance with 32 core
CPU: Intel Xeon E5-2698B v3

32KB L1 data an instruction caches

Hardware 256KB L2 cache
40MB L3 cache

RAM: 448GB

YCSB: 1 table, 10 operations, 50% RMW, Zipfian distribution
Workload

TPCC: 9 tables, Payment and NewOrder, 1 Warehouse

Operating System: Ubuntu LTS 16.04.3
Software

Compiler: GCC with -O3 compiler optimizations

71

Effect of Varying Contention

5 write and 5 read operation per transaction
e 32 worker threads

[0© ®mMiasissN mEmQuECC]| o
2.5 " |% % FOEDUS-MOCC A A SILO /
o o CICADA @@ 1croc| /¢
e NO_WAIT R
2.0t
=1%)
= A
< 1.5¢
@) e
= O
=
ﬁ g 1.0}

o
&)

=

=

- of
=

00 04 08 09 099 0.0 04 0.8 09 0099
Zipfian Theta (0) Zipfian Theta (0)

Workload contention resiliency
Cache locality under high-contention

72

Effect of Varying Worker Threads

e 5 write and 5 read operation per transaction
e Zipfian theta = 0.99

2.0
2.0}
=1
=
Fg..[_‘ 1.5}
o =
=9
== 1.0}
=p> 7
— 201 OO ERMIA-SI SSN [HHE QUECC
O 5 w % FOEDUS-MOCC N SILO
' e » CICADA €99 1ICTOC
e NO WAIT
0.0 , 1 , S | 0 p—t—a—a—
4 8 16 24 32 4 8 16 24 32
Worker Threads Worker Threads

Avoiding thread coordination & eliminating all execution-induced
aborts

73

Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload

41 ®

® ® H-Store

oy

[

I'hroughput
(Million TPS)
N

@
. ¥ e 9 o
0 1 5 10 20 50 80 100
% of Multi-partition transactions

-

Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload

41 @

W

\
\
\
= .]
L i -
.—¢ T
\
\ \
\ \
\ \
\ A
\ \

4.3x at 1%

I'hroughput
(Million TPS)
DD

p—

—o o

-

® ® H-Store BHE QueCC/| |
g 2—a—

\
\
_

| Two orders of

Magnitude

s — 3

0 1 5 10 20 50 80 100
% of Multi-partition transactions

QueCC is not sensitive to multi-partitioning

75

TPC-C Results

1 Warehouse (highly contended workload)
50% Payment + 50% NewOrder transaction mix

SILO} R i L L
QUECC

NO WAIT W i-eeeeriormmemmmeemsersermssdisiesfi i
CICADA B oo
FOEDUSMOCC i~
ERMIA-SI SSN{|
00 05 1.0 1.5 20 25 3.0 3.5 40 4.5
Throughput (Million TPS)

QueCC can achieve up to 3x better performance on high-contention
ﬁ ﬁ TPC-C workloads

76

QueCC Conclusions

V' Efficient, parallel and deterministic in-memory transaction processing
V' Eliminates almost all aborts by resolving transaction conflicts a priori

v Works extremely well under high-contention workloads

77

.
What’s Next: Q-Store

QueCC Q-Store
> >
Execution ' ’ - ,
Queues
- W ||
—
N——/ > b
= —
Multi-core Partitioned
Single-node on Distributed
Cluster

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020

o
What’s Next: Q-Store

(o
(o

Batching Client} P
 Transactions '

(@
(@

Plan Local and Remote
Execution Queues

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020 79

.
What's Next: Q-Store

|| it
Batching Client —> | % % — %
- Transactions | 4 7 7 ‘
||]| e
L I
Plan Local and Remote Deliver Remote
Execution Queues Execution Queues

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020 80

e
What’s Next: Q-Store

1] (1] Ilr]| alll
([i | AI Il ([N i ([
- -))
Batching Client = = % = =
atching Clien | a | | 9 | : |
- Transactions g -1 ’ | 1 0 '
1] {1]|]|
— i ([vi - imY i ([
)) o~))
= = = = = =
Plan Local and Remote Deliver Remote Execute
Execution Queues Execution Queues Queues

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020 81

E
What's Next: Q-Store

QueCC Q-Store
o >
IIII = || =
Execution —‘—" - ;
Queues IIII IIII
w‘ |
> >
—— ——
= =
Multi-core Partitioned
Single-node on Distributed
Cluster

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020 82

o
What’s Next: QBFT

QueCC Q-Store QBFT

)

- -
N—— N ——
IIII

T
T Il

Partitioned &

(== (==
(== (@m=

))
Execution B - , ’ % g .
Queues Repllca’[ed
- || b L J
- - = = L
= = \ £ = /
Multi-core Partitionec i E
Single-node on Distributed - =
Cluster —

83

S
What’s Next: QBFT

QBFT

)

Partitioned &
Replicated

Tl
T Il

(@©m= (mm
(@© == (@
(@© == (o=
(@© == (@

N -

(@ == (@
(@ == (@

84

