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Hardware Trends

h Large core counts i L arge main-memory

HPE Superdome Server
144 physical cores
o1B of RAM

*Image source: https://www.hpe.com/us/en/servers/superdome.html



Popularity of Key-value Stores

sriak

® No multi-statement

transactions AEROSPIKE
¢ \Weak consistency redis
amazon
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Project Voldemort
@ A distributed database.



High-Contention Workloads

High number of
contented operations
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Challenge ?77?
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State-of-the-Art Concurrency
Control Protocols

Class
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SOSP ‘13
® Optimized for multi-core

hardware and main- TIcToc ~ /mestamp o~ 1o s

Ordering
memory datalbases
FOEDUS- Optimistic VLDB “16
L MOCC CC
® Non-deterministic
ERMIA MVCC  SIGMOD ‘16

Cicada MVCC SIGMOD ‘17

Transaction Processing on Modern Hardware, M. Sadoghi and S. Blanas



Performance Under High-Contention
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Performance Under High-Contention
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2PL - NoWait -

i Abort transaction (to avoid potential deadlocks)
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Key Insights

e Many aborts due to high contention

e Non-determinism in CC cause these aborts

e Can we do better?

e |s it possible to eliminate non-deterministic
concurrency control from transaction
execution?

41



Deterministic Transaction
Execution

H-Store [Kallman et al. ’08]

Designed and optimized for horizontal scalability, multi-core
hardware and in-memory databases

Stored procedure transaction model
Static partitioning of database
Assigns a single core to each partition

Execute transaction serially without concurrency control within
each partition

42
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Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload
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Can We Do Better?

Our motivations are
o [Efficiently exploits multi-core and large main-memory systems
e  Provide serializable multi-statement transactions for key-value stores
e Scales well under high-contention workloads
Desired Properties
e (Concurrent execution over shared data
e Not limited to partitionable workloads

e \Without any concurrency controls

50



IS it possible to have concurrent execution over shared

data without having any concurrency controls?
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Introducing: QueCC

Queue-Oriented, Control-Free, Concurrency Architecture

A two parallel & independent phases of priority-driven planning & execution

Phase 1: Deterministic priority-based planning of transaction operations in parallel
= Plans take the form of Prioritized Execution Queues
= Execution Queues inherits predetermined priority of its planner

= Results in a deterministic plan of execution

Phase 2: Priority driven execution of plans in parallel
= Satisfies the Execution Priority Invariance

“For each record (or a queue), operations that belong to higher priority queues
(created by a higher priority planner) must always be executed before executing any
lower priority operations.”
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QueCC Architecture
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QueCC Architecture

Priority-based Parallel Planning Phase
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QueCC Architecture

i Queue-oriented Parallel Execution Phase
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~ QueCC Abort Count: O
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ResilientDB Blockchain Fabric

Application Layer / Testbed (YCSB, SYCSB, TPC-C Benchmarks)

Enable/Disable Secure Transactiohs

E

| | Consensus Protocols (GeoBFT, PoE, RCC, Delayed
‘ Replication, ByShard, RingBFT,
1 Zyzzyva, Bitcoin-NG, PoW, PBFT, RBFT)

Concurrency Control Protocols

(2PL, QueCC, 2VCC, DORA, MVCC, Timestamp,
H-Store, NoWait, Silo, Foedus, MOCC, TicToc, Cicada)
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Storage Layer: Lineage-based Storage Archltecture
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Fault-tolerant Distributed Transactions on Blockchain., S. Gupta, J. Hellings, M. Sadoghl

ResilientDB

https: ithub.com/resilientdb
https://resilientdb.com/
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Evaluation Environment

Microsoft Azure instance with 32 core
CPU: Intel Xeon E5-2698B v3

32KB L1 data an instruction caches

Hardware 256KB L2 cache
40MB L3 cache

RAM: 448GB

YCSB: 1 table, 10 operations, 50% RMW, Zipfian distribution
Workload

TPCC: 9 tables, Payment and NewOrder, 1 Warehouse

Operating System: Ubuntu LTS 16.04.3
Software

Compiler: GCC with -O3 compiler optimizations
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Effect of Varying Contention

5 write and 5 read operation per transaction
e 32 worker threads
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Effect of Varying Worker Threads

e 5 write and 5 read operation per transaction
e Zipfian theta = 0.99
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Avoiding thread coordination & eliminating all execution-induced
aborts
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Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload
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Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload
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TPC-C Results

1 Warehouse (highly contended workload)
50% Payment + 50% NewOrder transaction mix

SILO} R i L L
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QueCC can achieve up to 3x better performance on high-contention
ﬁ ﬁ TPC-C workloads
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QueCC Conclusions

V' Efficient, parallel and deterministic in-memory transaction processing
V' Eliminates almost all aborts by resolving transaction conflicts a priori

v Works extremely well under high-contention workloads
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What’s Next: Q-Store

QueCC Q-Store
> >
Execution ' ’ - ,
Queues
- W ||
—
N——/ > b
= —
Multi-core Partitioned
Single-node on Distributed
Cluster

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020
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What’s Next: Q-Store
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Execution Queues

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020 79
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