
Group 14
Ayman Dewan, Bin Lama, Nathan Ng,

Kyle Insaurralde, Raynier Tan

BuɈerpool

● Keeps a limited amount of pages in memory
○ Number of memory slots set in config

● Stores and loads pages from disk
● Slot information:

○ dpage: physical location of page on disk
○ pins: number of active accesses
○ last_accessed: time slot was last accessed
○ dirty: was data changed
○ data: bytearray

● Least recently used eviction policy

BuɈerpool: Access Page to Release Page

1. Page requests its data from Bufferpool
2. Load page into memory if not already

a. First, check if any slots are free
b. If not, find least recently accessed slot that is not in use
c. Evict previous slot data and write to disk
d. Load current pages data from disk into slot

3. Mark slot as dirty if write and set last_accessed time
4. Increase pin count on slot
5. Return reference to data in memory
6. Page completes its read or write
7. Page tells Bufferpool it can be released

Disk

Restore Database
1. Read number of tables

and number of
directories

2. Read through disk
directories
a. Save table_id, range_id,

page_id and column num of
each entry

3. Restore tables
a. Read table_name, cur_rid,

num_columns, and key column

Merging

- Page range level
- Base_RID and Latest TS Column added
- Uses stack for all tail RID’s updates (FIFO)
- Merge_checker checks if merge needs to be initiated

- It will then set the pre_tps to the rid of the latest update in the
stack.

- The merge begins in a separate thread and runs in the
background of the main thread.

__merge()

- Acquires a lock, and from the unmerged_stack, finds latest Tail
RID and corresponding Base RID, and adds it to a hash table

- Then, iterate over base pages and make deep copies of the base
pages (from disk) to our consolidated_page_list

- Next, iterate over the latest_updates and write tail’s column to
consolidated page if schema for column is 1

- The base records schema is updated to show which columns have
been merged into the base page.

- Lastly, append the consolidated_page_list to the merge_ready_list

Merging Consolidated Pages

- Upon any query or when a merge is ready to initiate, check
the merge_ready_list it if has any consolidated pages ready

- If so, call merge_page_directory() to begin merging the
consolidated pages into the page range

- Then, save the bufferpool slots if anything is dirty, and
pop the merge_ready_list to get the consolidated pages

- Set the bufferpool for each of the consolidated pages and
insert its data into the disk

- Lastly, make the page range point to the new consolidated
pages and set the page range’s TPS to what Pre_TPS was.

Update, Select, Sum, & Delete

- Update: For each record, it’s first tail record after
merge is initiated will reset schema to 0 and reset
cumulation

- Delete will create “copy” records for any non-updated
columns, and then create a deleted record with schema 0
and NULL column values

- Deleted records will be shown on the base page after
merged

- Sum now uses select() to retrieve values from the table
- Select is now updated to read from the new locations

depending on Pre_TPS, TPS, and indirection

Update - Cases

Select - Race Condition Example (Pre-TPS)

Index

- Initially we create a list of None values. Then on the 0th
index, we create a B+ tree that will have the key and value
in sorted order. After that, when we insert keys in the
queue, we will create an index for every keys added and
assign their rid as their Value.

- If we are inserting to a different column number other than
0 (where grades will be instead of student id), we will
create a dictionary by calling a create index function and
in there we will add an array of values for every keys
because we know that we can have different values for the
same keys which is not supported on the implementation of B+
trees.

Index

- When we call the db.py to close we will close all the
databases that we created that had index information saved
inside them.

- In addition, when we access them next time, we will open
them and if they have the keys already, then we will replace
them with the new values.

- When we call drop index, we will delete the database that we
have created and for the dictionary we will assign the
column on which they reside to none so that they will no
longer be accessed.

Index

- Only SIDs have
B+ trees

- Grades contain a
dictionary with
a list of values

