
ECS 165A Milestone 3:
Multi-threaded, in-memory,
and durable L-Store

“Nameless DB”
- Nicholas Chan
- Kevin Pack
- Anirudh Shenai (Ani)
- Jay Titterud
- Qing Zhou (Dave)

Database Architecture

Database

Table

Page Range

Base/Tail Page

Page

Bufferpool

Index

Transaction Worker Transaction

QueryLock ManagerPage Directory

Latched shared structures: Index, Lock Manager,
Bufferpool

 Range 0

Revamped How NamelessDB Write to Disk

 Database

 Table

 Range 1

 Page directory

 Metadata

 Database

 Table

Page Range

 Base page data

Base page metadata

 Tail page data

 Tail page metadata

 Page directory

 Metadata

Previous Format
Page ranges stored as files

M3 Format
Base and tail pages are stored as files

Simplify Page Directory

Range index Range pathOlder implementation:

Range index Version arrayNew implementation:

The version array
contains the merge
version number of
each base page

Merge: Originally had page range granularity. Calling a merge would update the range path to that of
the merged range.

Merge: Now has base page granularity. Calling a merge increments the version number of the base
page which is being merged.

Index - Optimization

Adjusted key structure to help query performance on columns featuring large amounts of duplicate keys

Queries Optimized:

[1,20], [1,21] → [1,[20,21]]

Index.compress_key:

Searches for pre existing key value, appending the
subsequent rid.

Index.mini_delete:

In the case where rid list contains more than one rid, the
delete function just pops the appropriate rid from list,
maintaining tree balance.

Update

10.44387

Ensures accurate searching by updating existing BTrees after table data is altered. Takes place
with write queries: Update, Insert, Delete.

[Index, None, None, Index, None]
self.table.index.indices:

Update

6.703125

M2 Average M3 Average

Query Improvement

Merge

Merge will trigger when tail is page full but we only execute

the merge on full base pages

Tail Page is full

Trigger merge

Check for full
base pages

Merge only

Full base pages

BasePage Data

TailPage Data

Deep Copy

● Update the TPS
column

● Update version
control on Page
Directory

● Preserves isolation
and consistency

M3 Implementation for Concurrency

Database

Table

Page Range

Base/Tail Page

Page

Bufferpool

Index

Transaction Worker Transaction

QueryLock ManagerPage Directory

Exclusive

Shared

Transaction Worker
Transaction W

orkers

Assign Transactions Acquire a shared lock first for
reading a record

Only one
exclusive lock for
each record

Multiple shared lock
for one record

If any
transaction
fails, the
transaction
gets aborted
and rolled
back

Acquired a
exclusive lock for
write

Transaction
Transactions (List of Queries)

DBMS

Users

Access

Generate

1. Attempts to
execute

1. If any query fails,
the transaction get
aborted and
rollback

Transaction Workers

Lock Manager

Lock Manager

Maintain a set of readers and up to
one writer for each record (RID)

When the transaction worker acquires lock, the RID is
manage by our Lock Manager

Ensure no shared lock
when there is a exclusive
lock &

Transaction Workers

Strict 2PL
Exclusive

Shared

No wait 2PL

Acquire
 Locks

Release Locks

Transaction Workers

M3 Performance by Threading

- Window 10 OS

- Intel i7 @ 2.60GHz

- 16GB RAM

*1k queries function
*Used LRU eviction policy

M3 Performance by Eviction Policy

- Window 10 OS

- Intel i7 @ 2.60GHz

- 16GB RAM

*10K was used for all function except Aggregate
*Aggregate 100 of 100 record batch took
*Default 8 threads

M3 Performance by Eviction Policy

M3 Performance by Eviction Policy

Experiments in Each Milestone

Bufferpool

FIFO LIFO LRU MRU

● Big Page (Negligible impact on performance)

● Designed a rudimentary Index for key to RID pair

● Designed a rudimentary page directory that maps
RIDS to records

● BufferPool Eviction Policies (LRU is most
consistent in performance)

M1
M2

Conclusion

● Learned how to build a database from scratch, including implementation of
queries, indexing, disk storage, merge, and multi-threading

● Worked on testing including overall test, unit tests, and performance tests, as
well as experimental design, debugging as we programmed.

● Developed a team work ethic which involved division of work, accountability
and communication, and understanding different parts of the software design
process.

● We would like to thank Dr. Sadoghi and the TAs for giving us this
challenging assignment which pushed our creative limits and improved our
skills. We are also grateful for all the help we received through the process.

Sadoghi M, Bhattacherjee S, Bhattacharjee B, Canim M (2016) L-store: a real-time OLTP and OLAP system. In: CoRR, pp 540–551

