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How to quickly search for the desired information? 
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Searching for 76
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Searching for 76
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Searching for 76
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Searching for 76
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Searching for 76
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Searching for 76
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Searching for 76
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Searching for 44?
(what-if the value does not exist)

(could we have an early termination?)



17

Could we impose an order to improve the search?



34 5621 76 8466 714333 7461 9955 81 9122
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Searching for 44?
(could we have an early termination?)
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Could we impose a structure to further improve the search?
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Searching for 44?
(could we have an early termination?)
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Could we spread the data cleverly to improve the search?
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hashtable

bucket

(returns a value 
between 1 to n, 
where n is the 

number of buckets)

Hashing (       )  = ?
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81 81

Inserting 81

Hashing (       )  = 6
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43 43

81

Inserting 43

Hashing (       )  = 10
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76

43

76

Inserting 76

Hashing (       )  = 8

81



Hashing (       )  = 10
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9191

collisions 
(when multiple values 

hash to the same bucket)
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Searching for 76
(now we can have a constant lookup cost)
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Could we instead search for 
76, 77, 78, ..., 90, 91?
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Hashing (       )  = 1

Hashing (       )  = 378

Hashing (       )  = 890

Hashing (      )  = 1091

77

Searching for 76-91
Could we instead search for 

76, 77, 78, ..., 90, 91?

Hashing (       )  = 681

Hashing (       )  = 784

91
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Searching for 76-91

How about 76.01, 76.02, 76.03, …?
(simply not practical)

Hashing (       )  = 876

Hashing (       )  = 1

Hashing (       )  = 378

Hashing (       )  = 890

Hashing (      )  = 1091

77

Hashing (       )  = 681

Hashing (       )  = 784

91
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Could we imagine a new design to support searching 
for a range of values efficiently?
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Let’s promote a subset of values as seeds

34 71 91

91

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303
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Let’s promote a subset of values as seeds

34 71 91

Suppose every value points to 
its next larger value

91

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303
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sorted seeds

Searching for 76-91

34 9171 71

91

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303
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sorted seeds

Searching for 76-91

Find the largest seed smaller than 76: 71

34 71 9171

91

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303
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sorted seeds

Searching for 76-91

Find the largest seed smaller than 76:

Hashing (       )  = 371

then simply follow the pointers to 
find all values between 76-91

71

34 71 91

91

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303
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Inserting 79
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R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303
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Inserting 79

34

56

84

71

33

99

55

43

81

7461

12

76

Hashing (      )  = 1079 79

Find the largest seed smaller than 79: 

Hashing (       )  = 371

71

sorted seeds
34 71 91

91
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R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303



52

Inserting 79
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Hashing (      )  = 1079

adjust the pointers accordingly

sorted seeds
Hashing (       )  = 371

Find the largest seed smaller than 79: 71

34 71 91

7991

13

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303
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Database Storage Layouts 
(how likely that we need an index for range queries?)
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a database record, e.g., 
[Name: Alice, Age:21, Major: CS]

[Name: Alice, Age:21, Major: CS]

Row-based Layout

database pages 
(containing a set of records)
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database pages 
(containing a set of records)

a database record, e.g., 
[Name: Alice, Age:21, Major: CS]

[Name: Alice, Age:21, Major: CS]
[Alice] [21] [CS]

Column-based LayoutRow-based Layout

[Name] [Age] [Major]
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database pages 
(containing a set of records)

a database record, e.g., 
[Name: Alice, Age:21, Major: CS]

[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

[Joe] [23] [EE]

[Name: Sally, Age:25, Major: EE]

[Sally] [25] [EE]

Column-based LayoutRow-based Layout

[Alex] [24] [CS]

[Name: Alex, Age:24, Major: EE]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]
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[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Row-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

[Name: Sally, Age:25, Major: EE]

Column-based Layout

[Name: Alex, Age:24, Major: EE]

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]
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[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Row-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

[21, 23, 24]

[Name: Sally, Age:25, Major: EE]

Column-based Layout

[Name: Alex, Age:24, Major: EE]

Index on Age

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]
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[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Row-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

[21, 23, 24]

[Name: Sally, Age:25, Major: EE]

Column-based Layout

[Name: Alex, Age:24, Major: EE]

Index on Age

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]
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[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Row-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

[21, 23, 24]

[Name: Sally, Age:25, Major: EE]

Column-based Layout

[Name: Alex, Age:24, Major: EE]

Index on Age

Alternatively read only the Age 
column to find the relevant values

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]
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[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Row-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

[21, 23, 24]

[Name: Sally, Age:25, Major: EE]

Column-based Layout

[Name: Alex, Age:24, Major: EE]

Is an index really useful here?

Index on Age

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]
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[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Column-based Layout

[Name: Sally, Age:25, Major: EE]

[24+]

Searching for all students over the age of 24
(may return only a few students)

Row-based Layout

[Name: Alex, Age:24, Major: EE]

Index on Age

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]
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[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Column-based Layout

[Name: Sally, Age:25, Major: EE]

[24+]

Searching for all students over the age of 24
(may return only a few students)

Row-based Layout

[Name: Alex, Age:24, Major: EE] Could we instead employ 
hashing with the seeding idea?

Index on Age

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]



Thank You
Questions?
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