
Storage & Indexing
in Modern Databases

ECS 165A – Winter 2022

Mohammad Sadoghi
Exploratory Systems Lab
Department of Computer Science

2

How to quickly search for the desired information?

3

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

4

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

5

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

6

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

7

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

8

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

9

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

10

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

11

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

12

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

13

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

14

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

15

Searching for 76

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

16

Searching for 44?
(what-if the value does not exist)

(could we have an early termination?)

17

Could we impose an order to improve the search?

34 5621 76 8466 714333 7461 9955 81 9122

18

1312

34

56 21 76

84

13
66

71

43

33

74
61

99

12

55

81

91

22

34 5621 76 8466 714333 7461 9955 81 9122

19

1312

Searching for 76

34 5621 76 8466 714333 7461 9955 81 9122

20

1312

Searching for 76

34 5621 76 8466 714333 7461 9955 81 9122

21

1312

Searching for 44?
(could we have an early termination?)

22

Could we impose a structure to further improve the search?

34 5621 76 8466 714333 7461 9955 81 9122

23

1312

34 5621 76 8466 714333 7461 9955 81 9122

24

1312

56

34 5621 76 8466 714333 7461 9955 81 9122

25

1312

56

Searching for 76

34 5621 76 8466 714333 7461 9955 81 9122

26

1312

56

Searching for 76

34 5621 76 8466 714333 7461 9955 81 9122

27

1312

56

34 5621 76 8466 714333 7461 9955 81 9122

28

1312

56

22 74

34 5621 76 8466 714333 7461 9955 81 9122

29

1312

56

22 74

Searching for 76

34 5621 76 8466 714333 7461 9955 81 9122

30

1312

56

22 74

Searching for 76

34 5621 76 8466 714333 7461 9955 81 9122

31

1312

56

22 74

Searching for 44?
(could we have an early termination?)

34 5621 76 8466 714333 7461 9955 81 9122

32

1312

56

22 74

Searching for 76-91

33

Could we spread the data cleverly to improve the search?

34

hashtable

bucket

(returns a value
between 1 to n,
where n is the

number of buckets)

Hashing () = ?

35

81 81

Inserting 81

Hashing () = 6

36

43 43

81

Inserting 43

Hashing () = 10

37

76

43

76

Inserting 76

Hashing () = 8

81

Hashing () = 10

38

43

76

Inserting 91

81

9191

collisions
(when multiple values

hash to the same bucket)

39

34

56

71

33

55

13

43

81

7461

12

76

collisions
(when multiple values

hash to the same bucket)

91

84

99

40

34

56

71

33

55

13

43

76

81

7461

12

76

Searching for 76
(now we can have a constant lookup cost)

Hashing () = 8

91

84

99

41

34

56

71

33

55

13

43

76

81

7461

12
Searching for 76-91?

Could we instead search for
76, 77, 78, ..., 90, 91?

91

84

99

42

34

56

84

71

33

99

55

13

43

76

81

7461

12Hashing () = 876

Hashing () = 1

Hashing () = 378

Hashing () = 890

Hashing () = 1091

77

Searching for 76-91
Could we instead search for

76, 77, 78, ..., 90, 91?

Hashing () = 681

Hashing () = 784

91

43

34

56

84

71

33

99

55

13

43

76

81

7461

12
Searching for 76-91

How about 76.01, 76.02, 76.03, …?
(simply not practical)

Hashing () = 876

Hashing () = 1

Hashing () = 378

Hashing () = 890

Hashing () = 1091

77

Hashing () = 681

Hashing () = 784

91

44

Could we imagine a new design to support searching
for a range of values efficiently?

45

34

56

84

71

33

99

55

13

43

81

7461

12

76

Let’s promote a subset of values as seeds

34 71 91

91

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

46

34

56

84

71

33

99

55

13

43

81

7461

12

76

Let’s promote a subset of values as seeds

34 71 91

Suppose every value points to
its next larger value

91

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

47

34

56

84

33

99

55

13

43

81

7461

12

76

sorted seeds

Searching for 76-91

34 9171 71

91

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

48

34

56

84

33

99

55

13

43

81

7461

12

76

sorted seeds

Searching for 76-91

Find the largest seed smaller than 76: 71

34 71 9171

91

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

49

34

56

84

71

33

99

55

13

43

81

7461

12

76

sorted seeds

Searching for 76-91

Find the largest seed smaller than 76:

Hashing () = 371

then simply follow the pointers to
find all values between 76-91

71

34 71 91

91

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

50

Inserting 79

34

56

84

33

99

55

43

81

7461

12

76

Hashing () = 1079

71

7991

13

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

51

Inserting 79

34

56

84

71

33

99

55

43

81

7461

12

76

Hashing () = 1079 79

Find the largest seed smaller than 79:

Hashing () = 371

71

sorted seeds
34 71 91

91

13

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

52

Inserting 79

34

56

84

71

33

99

55

43

81

7461

12

76

Hashing () = 1079

adjust the pointers accordingly

sorted seeds
Hashing () = 371

Find the largest seed smaller than 79: 71

34 71 91

7991

13

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

53

Database Storage Layouts
(how likely that we need an index for range queries?)

54

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]

[Name: Alice, Age:21, Major: CS]

Row-based Layout

database pages
(containing a set of records)

55

database pages
(containing a set of records)

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]

[Name: Alice, Age:21, Major: CS]
[Alice] [21] [CS]

Column-based LayoutRow-based Layout

[Name] [Age] [Major]

56

database pages
(containing a set of records)

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]

[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

[Joe] [23] [EE]

[Name: Sally, Age:25, Major: EE]

[Sally] [25] [EE]

Column-based LayoutRow-based Layout

[Alex] [24] [CS]

[Name: Alex, Age:24, Major: EE]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]

57

[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Row-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

[Name: Sally, Age:25, Major: EE]

Column-based Layout

[Name: Alex, Age:24, Major: EE]

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]

58

[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Row-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

[21, 23, 24]

[Name: Sally, Age:25, Major: EE]

Column-based Layout

[Name: Alex, Age:24, Major: EE]

Index on Age

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]

59

[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Row-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

[21, 23, 24]

[Name: Sally, Age:25, Major: EE]

Column-based Layout

[Name: Alex, Age:24, Major: EE]

Index on Age

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]

60

[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Row-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

[21, 23, 24]

[Name: Sally, Age:25, Major: EE]

Column-based Layout

[Name: Alex, Age:24, Major: EE]

Index on Age

Alternatively read only the Age
column to find the relevant values

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]

61

[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Row-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

[21, 23, 24]

[Name: Sally, Age:25, Major: EE]

Column-based Layout

[Name: Alex, Age:24, Major: EE]

Is an index really useful here?

Index on Age

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]

62

[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Column-based Layout

[Name: Sally, Age:25, Major: EE]

[24+]

Searching for all students over the age of 24
(may return only a few students)

Row-based Layout

[Name: Alex, Age:24, Major: EE]

Index on Age

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]

63

[Name: Alice, Age:21, Major: CS]

[Name: Joe, Age:23, Major: EE]

[Name: Bob, Age:21, Major: CS]

Column-based Layout

[Name: Sally, Age:25, Major: EE]

[24+]

Searching for all students over the age of 24
(may return only a few students)

Row-based Layout

[Name: Alex, Age:24, Major: EE] Could we instead employ
hashing with the seeding idea?

Index on Age

[Joe] [23] [EE]

[Sally] [25] [EE]

[Alex] [24] [CS]

[Alice] [21] [CS]

[Name] [Age] [Major]

[Bob] [21] [CS]

Thank You
Questions?

64

