Storage & Indexing
in Modern Databases

ECS 165A - Winter 2022

Mohammad Sadoghi

Exploratory Systems Lab
Department of Computer Science

' UCDAVIS

G] ResilientDB
UNIVERSITY OF CALIFORNIA

Expolab

Creativity Unfolded

How to quickly search for the desired information?

Searching for 76

s s @
00‘

Searching for 76

s s @
00‘

Searching for 76

s s @

Searching for 76

Searching for 76

Searching for 76

s s @
00‘

i

Searching for 76

Searching for 76

\ Searching for 76

‘ Searching for 76

Searching for 76

Searching for 442
(what-if the value does not exist)
(could we have an early termination?)

® o0

o o
0o ? %4
@

Could we impose an order to improve the search?

L]
--~—_—’

18

Searching for 76

m B2 23334 43 55 56 61 66 71 74 76 B 84 91 99
Jr—

Searching for 76

DONBDIPEHOGIBPNOBO®
- 7

Searching for 442
(could we have an early termination?)

Could we impose a structure to further improve the search?

N N
- N

- N

Searching for 76

L

~ - . B

DI O R D

Searching for 76

- /< - = B
e
=) /

26

- N

28

Searching for 76

-

@@ @ e 6 @6 6 6 77 e @ & 9

Searching for 76

l
A@

0000000000000@0000

Searching for 442
(could we have an early termination?)

-

Searching for 76-91

|

L > L

w w9

Could we spread the data cleverly to improve the search?

hashtable

Hashing (é) =7

(returns a value
between 1ton,
where n is the
number of buckets)

bucket
—

B

Hashing (‘) =6

Inserting 81

35

Hashing (‘)
=10

Inse
rting
43

36

Hashing (‘) =8

Inserting 76

37

Inserting 91

~
collisions
(when multiple values
Hashing () =10 hash to the same bucket)

collisions
(when multiple values
hash to the same bucket)

39

Searching for 76
(now we can have a constant lookup cost)

@ecrecareee

Hashing (@) =8

56/
99
2
E
55

Searching for 76-912
Could we instead search for
76, 77,78, ..., 90, 912

Hashing (176) =8 @

Hashing (177) =1

Hashing (178) =3 @
E
55

Hashing ((81) =6

| 84

Hashing ((84) =7 76

l B

Hashing (‘g0) =8 @ e

Hashing ((91) =10

Searching for 76-91
Could we instead search for
76, 77,78, ..., 90, 912

Hashing (76) =8 @

Hashing (177) =1

Hashing (178) =3

Hashing ((81) =6

@eeee

! 84

Hashing ((84) =7 76

l 3

Hashing ((90') = 8 @ o1

Hashing ((91) =10

Searching for 76-91

How about 76.01, 76.02, 76.03, ...2

(simply not practical)

43

Could we imagine a new design to support searching
for a range of values efficiently?

Let’s promote a subset of values as seeds

[34 71 9]

45
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Let’s promote a subset of values as seeds

[34 71 91]
o

Suppose every value points to
> its next larger value

geeceee®

46
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Searching for 76-91

sorted seeds

[34 71 9]
o

%

o1

@ees =

47
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Searching for 76-91

sorted seeds

[34@91]
o

Find the largest seed smaller than 76: @

%

91

@ees =

48
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Hashing (@) =3

Searching for 76-91

sorted seeds

___________ [34@91]

Find the largest seed smaller than 76: @

> then simply follow the pointers to
find all values between 76-91

o1

@eerzreeree

49
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Hashing ((79)

10

Inserting 79

o

7

eeeeeee

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

50

Hashing (@) =3

Inserting 79

sorted seeds

[34@91]

&s@e

Find the largest seed smaller than 79: @

7

eeeeeee

51
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Inserting 79

eeree

sorted seeds

[34@91]

Hashing (@) =3

(3

Find the largest seed smaller than 79: @

" adjust the pointers accordingly

Hashing () =10

geeeee

52
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Database Storage Layouts
(how likely that we need an index for range queries?)

database pages
(containing a set of records)

[Name: Alice, Age:21, Major: CS]

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]

Row-based Layout

database pages

(containing a set of records)
[Name]

—

Major]

[Name: Alice, Age:21, Major: CS]

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]

LA RN RNERE
LR TR
JANRERNERE

Row-based Layout Column-based Layout

[Name: Alice, Age:21, Major: CS]

| |
| |
‘ [Name: Bob, Age:21, Major: CS] ‘
| |
| |

 [Name: Joe, Age:23, Major: EE] |

‘ [Name: Alex, Age:24, Major: EE] ‘

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout

database pages
(containing a set of records)

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]

e

—
N
-

—_

Bl DERERDEEDR:

g2Ell DONENEE

—
wn
2

<

—

gelEll DORERHEd:

Column-based Layout

56

Searching for all students between the age of 21 to 24

(may return many students)
[Name] [Age]

[Name: Alice, Age:21, Major: CS]

| |
| |
‘ [Name: Bob, Age:21, Major: CS] ‘
| |
| |

il NRNENERERED

 [Name: Joe, Age:23, Major: EE] |

[Joe]

—
wn
2

<

—

EEE00 BNNERNEENE
2eEll DONeNRECeli:

‘ [Name: Alex, Age:24, Major: EE] ‘

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout Column-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

| | [Name] [Age] [Major]
| | [] [1] [|
| | [] [1] L]
cs
[Name: Alice, Age:21, Major: CS] Index on Age IEI
|
[1] [1] L]
[1] [1] [|
| [
| /0 £ []
| [Name: Bob, Age:21, Major: CS]
| [] [1] L]
|
[1] [1] [|
| [1] [1] L]
| | [EE] |
|
| [Name: Joe, Age:23, Major: EE] [Alex] [24] [CS]
o] [Bs] [feEL

| [Name: Alex, Age:24, Major: EE]

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout Column-based Layout **

I I I I S I S S B S S S D S B B S S .y,

Searching for all students between the age of 21 to 24

e ————— - (may return many students)
| | \ [Name] [Age] [Major]
| | I Em e
| | BN BN B
[cs

|[Name: Alice, Age:21, Major: CS] I Index on Age E
| B B B

/0 [[]
| (Bl
| BN B Bm
| [Name: Bob, Age:21, Major: CS]
| B B [
|

/0 [[]
| /0 [[]
| C[EE]
o A e [Alex] [24] [cS]

ame: Joe, Age:23, Major:
[Sally]
| [Name: Alex, Age:24, Major: EE] I IEI IEI
| [Name: Sally, Age:25, Major: EE] | I
/

________ -

Row-based Layout Column-based Layout

59

I I I I S I S S B S S S D S B B S S .y,

Searching for all students between the age of 21 to 24

e ——————— - (may return many students)
| \ [Name] ((age] | [Major]
| | | e ' []
: | | e ' []
| [Aice] [| | [cs] |
|[Name: Alice, Age:21, Major: CS] | Index on Age | I 5]
| e 'mm' e
] : LT
| NN
| BN Em .
|[Name: Bob, Age:21, Major: CS] D I D I D
| I]
| I I
N 1]
| N 1]
| [Deel] 1[[&111 [EE]
[Alex] I [1241 |1 [cS]
|[Name: Joe, Age:23, Major: EE] [Sally] I @ I @

| [Name: Alex, Age:24, Major: EE]

| [Name: Sally, Age:25, Major: EE] |

-

y Alternatively read only the Age

———————— -~ column to find the relevant values

Row-based Layout Column-based Layout *°

I I I I S I S S B S S S D S B B S S .y,

[Name: Alice, Age:21, Major: CS]

|
|
| [Name: Bob, Age:21, Major: CS]
|
|

| [Name: Joe, Age:23, Major: EE]

| [Name: Alex, Age:24, Major: EE]

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout

Searching for all students between the age of 21 to 24

(may return many students)

Index on Age

Is an index really useful here?

[Name]

01 BNNERNEEN

[Joe]

[Alex]
[Sally]

(lage] |
| !
| !

I [[23] i
I [T2s1 1

[Maj

Y
S—

[*}

=
Rl

g2eEll PREbedEnelE

Column-based Layout

61

Searching for all students over the age of 24

(may return only a few students)
[Name] ([Age] |

| | [Major]
| | o 'mm
| | I ' =
[
' [Name: Alice, Age:21, Major: CS] | Index on Age I E I
| |
Bl '
[] | HE' B
| | goal
| | I = .
| [Name: Bob, Age:21, Major: CS] | I I
| | I = -
P BN ' e
[| I 1
1 | weal] I[@mI) [
[
I |[Name: Joe, Age:23, Major: EE] | [[I; lael)lj] I % : %
I |[Name: Alex, Age:24, Major: EE] | |
[| [Name: Sally, Age:25, Major: EE] [
\ |
N o e e e e e o e 7’

Row-based Layout Column-based Layout *

Searching for all students over the age of 24

(may return only a few students)
[Name] ([Age] |

| | [Major]
| | — B U
| |] | =
|[Name: Alice, Age:21, Major: CS] | Index on Age | | =l
| |
Bl '
[] | '
| | : (]!
| | E Em -
| [Name: Bob, Age:21, Major: CS] | I I
| | - I . i
| | I |
I— R N
() K N 1
L F : | [IEel]
[
| |[Name: Joe, Age:23, Major: EE] | [[I;I:I:j] I % : %
[' [Name: Alex, Age:24, Major: EE] | I COUId we instead employ - -
I | [Name: Sally, Age:25, Major: EE] [. . . .
\) hashing with the seeding idea?

Row-based Layout Column-based Layout “

Thank You
Questions?

