
L-Store Milestone 3
Alana Rufer, Eseosa Omorogieva, Nina Gopal,
Riddhi Barbhaiya, Kushaal Rao

Lock Manager

LockManager

Manages shared and

exclusive locks used by 2PL

Coordinates release of all

locks held by a transaction

Locks initialized during

db.open() to reduce

performance overhead of

creating locks

LockManager

locks

RID1 : lock information

RID2 : lock information

t_locked_rids

TID2 : [array of rids locked]

TID3 : [array of rids locked]

TID4 : [array of rids locked]

TIDM : [array of rids locked]

TID1 : [array of rids locked]

RID3 : lock information

RID4 : lock information

RID5 : lock information

RID6 : lock information

RIDN : lock information

… …

manager_lock t_lock

Locking logic (for records)
If requested lock is not available,

transaction immediately aborts (NoWait)

Lock() object provides thread-safety for

lock information.

Actual holding of lock stored in type of

lock and array of transaction TIDs

RID :

threading.Lock()

type of lock (S or X)

[array of TIDs of transactions
holding the lock]

,

,

None S lock
(same Xact)

X lock
(same Xact)

S lock
(different Xact)

X lock
(different Xact)

S lock acquire no action no action acquire abort

X lock acquire upgrade (if no other
Xacts holding the lock)
else abort

no action abort abort

Locks currently held on specified record

Lock
requested

by Xact

Latching

Latching overview

Conflicts from accessing or

modifying shared data

threading.Lock() for basic

locking

Readers-Writer Lock:

increase concurrency by

allowing multiple readers

when possible

construct record

Ex: two transactions insert at the same time (without latching):

Find physical pages
to insert into

Acquire X lock on
RID

Write record to
page

Update page
directory and index

Get or create
base page

Get offset in
page for

appending

Transaction 1

construct record

Find physical pages
to insert into

Acquire X lock on
RID

Write record to
page

Update page
directory and index

Transaction 1

Generate RID

race condition: may
return same RID

race condition: may
create two base pages

race condition: may
return same offset

Preventing Conflicts in Shared Data Structures

LogicalPage:
accessing/
modifying pageids

RID
generation

Index:
accessing/
modifying entries

Merge:
starting merge,
adding to merge list

Insertion of record:
Prevent conflict on location in page,
or double-creation of new page

Separate locks for base page and
each active tail page

db & transaction & create_index:
Readers-Writer Lock (writer-preferring)

“writers”: create_index, db.close()
“readers”: transactions

Guarantee success of create_index()
Wait for transactions to finish before
db.close()

page_directory:
accessing/
modifying entries

Bufferpool:
file pointer seek + r/w

accessing sensitive
operations and data
structures

S and X lock acquisition during queries
Select

locate RID(s)

acquire S lock
on base record

Read tail record?

acquire S lock
on tail record

assemble record

yes

(for each rid)

no

construct record

find location to insert

acquire X lock
on new record

insert record

update index and
page directory

Insert

yes

no

locate RID

acquire X lock
on base record

acquire X lock
on tail record

tail record exists?

create new tail record

acquire X lock
on new record

Update

Write update to records

locate base record

acquire X lock
on base record

acquire X lock
on tail record

invalidate base record

invalidate tail record

Delete

Update index

(for each rid)

Transaction &
Transaction Worker

Transaction Worker

Transaction

QUERY: Insert, Writes, Update

QUERY N

QUERY 3

thread 1

QUERY 2

query_stack query_table

Q1_info

Q2_info

Q3_info

Table 1

Table 2

Table 3

QN_info Table N

… …
QUERY 1

QUERY 4

Transaction 1

Transaction Worker 1

Transaction 2 Transaction N

thread 2

Transaction 1

Transaction Worker 2

Transaction 2 Transaction N

time

thread N

Transaction 1

Transaction Worker N

Transaction 2 Transaction N

Atomicity & Isolation

Serializability via 2PL

If transaction is successful it is committed to

the database

On failure to acquire a lock, transaction aborts

immediately. All changes are rolled back

After transaction commits or aborts, all record

locks held by the transaction are released

(transaction atomicity)

Acquire
locks

Release
locks

commit or abort

Transaction
starts

Transaction
ends

Query Info

Insert: (Success_value, “I” , inserted_rid, columns)

Delete: (Success_value, “D” , invalidated_rids, fields)

Update: (Success_value, “U” , only_locks, rid_to_update, last_update_rid, new_rid,

old_schema_encoding, old_values, new_values, columns_modified)

query_stack query_tables

Q1_info

Q2_info

Q3_info

Table 1

Table 2

Table 3

QN_info Table N

… …

Aborting Transactions

Store info about completed transactions and

their corresponding tables in two stacks

During the abort, we pop the stacks and undo

each query

Release all rid locks during commit and abort

insert_undo

RID 2 Data Data Data

RID 1 Data Data Data

RID 3 Data Data Data

…

…

…

RID 1 Data Data Data

RID 0 Data Data Data

0 Data Data Data

…

…

…

Mark RID of inserted
record as invalid

Remove the RID
from the index on
the columns if exists

RID 2 Data Data Data

RID 1 Data Data Data

0 Data Data Data

…

…

…

RID 2 Data Data Data

RID 1 Data Data Data

RID 3 Data Data Data

…

…

…

Restore the invalid RID
of the base record

Add the RID to the
index on the columns
if exists

delete_undo

update_undo

Base Page

Tail Page

RID 2 Data Data Data

RID 1 Data Data Data

…

…

RID 3 Data Data Data…

0 Data Data Data…

0 Data Data Data…

Indir 1 Schema Data

Indir 0 Schema Data

Indir 2 Schema Data

…

…

…

RID 1

RID 0

RID 2

Indir 2 Data Data Data

Indir 1 Data Data Data

…

…

Indir 3 Data Data Data…

Indir 5 Data Data Data…

Indir 4 Data Data Data…

Indir 1 Schema Data

Indir 0 Schema Data

Indir 2 Schema Data

…

…

…

RID 1

RID 0

RID 2

Update: (Success_value, “U” , only_locks, rid_to_update, last_update_rid, new_rid,

old_schema_encoding, old_values, new_values, columns_modified)

Performance

Commit Rates with Varying Contention

Workload

- 2 threads
- 25 transactions per

thread
- update 1000 times

(randomly choose the key
to update)

- Vary the number of
records in the db

- Less records- more
contention between
transactions

Hardware: Dual-Core Intel Core i7, 2.5GHz, 16GB, 4 MB L3 Cache

Q&A

