
Milestone 3
Yingchen Gu, Glenn Chen
Rishika Roy, Kaleb Crans,

Ryan Kim

Transaction
Semantics

Overview

Concurrency
Control

Locks

Aborting

Committing

Transaction Class

Transaction Worker Class

Atomicity, Consistency,

Isolation, Durability (ACID)

Transaction
Semantics

Transaction Class

Contains queries to be executed

Transaction 1

Transaction 2

Transaction 3

Queries get added to the transactions using:

def add_query(self, query, table, *args)
…

Transaction Worker Class

Transaction

Transaction
Worker 1

Transaction
Worker 2

Transaction
Worker 3

Runs concurrently
with other worker
instances

Read()
Write()
Read()
Write()

Read()
Write()
Read()
Write()

Read()
Write()
Read()
Write()

Creates a thread and runs the
transactions as a thread

Atomicity

Succeeds Fails

Transaction Statements: Read(), Write()

Commit() Abort()

Everything is left unchanged

Actions are logged to make sure
changes can be undone if aborted

Writes to Disk

Isolation

Database

Transaction 4

Transaction 5
Transaction 1

Transaction 2

Transaction 3

Transactions are
executed concurrently

Database

Transaction 1

Transaction 2

Database

Transaction 1

Transactions
executed
sequentially

Durability

SucceedsTransaction Statements:
Read(), Write() Commit()

Once a transaction is
committed, it will stay in the
non-volatile memory

Non-Volatile Memory

Transaction
Committed

Non-Volatile Memory

Transaction
Committed

CRASH

The committed
transaction stays in there
even if the system fails

Concurrency
Control

Mutually Exclusive Locks

Use Lock object from threading module in Python

Lock.acquire() - thread waits if lock is taken, proceeds
if lock is available

Lock.release() - thread releases the lock making it
available to be acquired again

Prevent race conditions in critical sections (e.g.
creating new page ranges, updating pin counts, etc.)

lock.acquire()

// Critical section

…

// only one thread can be running
// here at a time

…

// End of critical section

lock.release()

How it looks in code:

2PL - Strict 2 Phase Locking

2PL
● Only allows serializable schedules

● To read:
○ Obtain an shared lock

● To write:
○ Obtain an exclusive lock

No more locks can be acquired after a lock has
been released

Transaction

Completed

Locks released once the
transaction is completed

Locks on Records

Choose lock granularity on records to help minimize conflicts

HashMap using RIDs as keys and the list of locks on the record as values

Values of the HashMap contain the transaction holding the lock, and the
type of lock

1 (1, ‘x’)

2 (1, ‘s’), (3, ‘s’)

3 (1, ‘s’), (2, ‘s’), (3, ‘s’)

4 (3, ‘x’)

 RID [(Transaction, Type)]
Shared lock (s) - requested when a
transaction wants to read a record

Exclusive lock (x) - requested when a
transaction wants to write a record

Aborting

Strict 2PL - transaction aborts if at any point it is unable to
acquire any necessary locks

Abort process
● Set the RIDs of all records added by the transaction to

be DELETED_RID_VALUE
● Release all locks belonging to the transaction

1 (1, ‘x’)

2 (1, ‘s’), (3, ‘s’)

3 (1, ‘s’), (2, ‘s’), (3, ‘s’)

4 (3, ‘x’)

 RID [(Transaction, Type)]

Transaction 4
Request exclusive lock on RID 4 Transaction 3 already has exclusive

lock on RID 4

Transaction 4 aborts

Committing

If the transaction is able to acquire locks on all the records it
needs, it commits

Commit process
● Write the changes to disk
● Release all locks belonging to the transaction

1 (1, ‘x’)

2 (1, ‘s’), (3, ‘s’)

3 (1, ‘s’), (2, ‘s’), (3, ‘s’)

4 (3, ‘x’)

 RID [(Transaction, Type)]

1 1, 2, 3

2 3

3 2, 3, 4

Transaction
RIDs Read or

Written

Release these locks when

committing

Thank You!

