L-Store: Lineage-based Storage Architectures
ECS165A: Winter 2023

Slides are adopted from Sadoghi, et al.
L-Store: A Real-time OLTP and OLAP System, EDBT'18

(SHexpotad UCDAVIS L §Jresiientor

UNIVERSITY OF CALIFORNIA Security, Privacy Reloaded

Mohammad Sadoghi ECS165A 1/16

Motivations
°

Data Management at Macroscale: The Four V's of Big Data

BlneCersgtl;EggeIl}lv Wa I ma rt

@ FICOSCORE

ralrd The score lenders use:

Mohammad Sadoghi ECS165A

Motivations
°

Data Management at Macroscale: The Four V's of Big Data

Anthem.
BlueCross BlueShield .

~FICOSCORE

The score lenders use:

Mohammad Sadoghi ECS165A

Motivations
°

Data Management at Microscale: Volume & Velocity

Data Velocity

R

»
Sales

OLTP
(Write-optimized)

Walmart

Mohammad Sadoghi ECS165A 2/16

Motivations
°

Data Management at Microscale: Volume & Velocity

Data Velocity

Data is tva
Stale “
il

b
Sales

OLAP
Extract-Transform-Load
(Read-optimized) (ETL) 1L

(Write-optimized)

Data Volume

Walmart

Mohammad Sadoghi ECS165A 2/16

Motivations
°

Data Management at Microscale: Volume & Velocity

Data Velocity
ORACLE %
- §C5°L Server c

Sales

OLAP
(Read-optimized) e Tr?:i)orm o (Writezl;;l;ii,mize d)
ORACLE ﬁ
Data Volume I
SQL Server
Walmart

Mohammad Sadoghi ECS165A 2/16

Motivations
.

One Size Does not Fit All As of 2012

Big Data Landscape

Vertical Apps
[
Log Data Apps
[splunk] asumacy

Ad/Media Apps
foolectivet]
@ il oot

Media -
gda DataXo

Business

Intelligence
ORACLE' | Hvoerion
B susinessomects

Moot [Business Ineligence

Efcwcos

S

Data As A Service
jnoerma 1
" ENRIX @ LexisNexist & LORATE

Autonomy ?
Qiik [oimo i)

Analytics and
Visualization

RELLILELS O Palantir]

QPERY e

(I METANARKETS
ASTER centrifuge

§Sas MTIBCO [Gamne
@eenoeticon o

0 Datameer
O platrors N Giro

alteryx <visually Ayam

Analytics
Infrastructure

VTG, .

cloudera ey’
EMC @ srenpLum

Operational Infrastructure As
Infrastructure A Service
Coucnsase 10gen == ‘amazon
Voic e —

Structured
Databases
ORACLE y

e

SYBASE

Wnerezza 5 kognitio .
DATASTAXY BhsoL N =" MarkLogic T Google BigQuery
Technologies
" & N
CriEnbpp b HERSE T cassandra
Copyright © 2012 Dave Feinleib dave@vedave.com blogs forbes.com/davefeinieib
ECS16.

Mohammad Sadoghi

Motivations
[1e}

One Size Does not Fit All As of 2017

BIG DATA LANDSCAPE 2017
e
s ————— e aoouensennce
cloudera 5208 sman DIUS g n 2
o P
et : EATUNO Do Quid Oconversea B | ter

[——

O cr | 55800 ukr
reeens | Wour

sumsna 1 owascovss | | o —

6sas

BIPLATIORMS —) VIIALZATON ascxormce | secumy

Steta

APPLICATIONS - NDUSTRY

v EDUCATON GOVERMICKT 1 FMANCELENDNG — FANCE. — REALESATE | ISURANC
P) @ socata | Ondede> ffirm | WETNG | e | i
3 o eeires L4411 | BDctamer | %7
4 Queewsay | A s | dmade
morkds | 7 | g [

e o
o

Somad

Ben 5| | B i
o ganty custora
im0 ¢ TEH B oo 6535 8 v ORACLE Fllmessee

4 theano NN MEe o@ | 4 N ~

Caffe om == 'n

G
ok vas @ | B | 0300 §-

oaTAsouRcEs aAns pra—
o JE— s [r— suncn
D1 ot = Arvars 4 . © fobot
xanie C1er) o < OpenaL . # MIRI
o -
- e i 7 ot =
z e oy enigma K2
V2~ Last updated /32017 © Matt Turck (@mattturck), Jim Hao (@jimrhao), & tturck. 7 FIRSTMARK

Mohammad Sadog}

Motivations
oce

Data Management at Microscale: Volume & Velocity

OLAP+OLT
(Read & Write-
optimized)

Walmart

Mohammad Sadoghi ECS165A 4/16

Motivations
°

Storage Layout Conflict

Read Optimized
Row-based Storage (compressed, read-only pages) . mnar Storage

-+ [] a
|‘
—

]
Write Optimized]
(uncompressed in-place updates) —

— L
— 7 -
—
7

|
Write-optimized (i.e., uncompressed & row-based) vs. read-optimized (i.e.,
compressed & column-based) layouts

Mohammad Sadoghi ECS165A 5/16

Indirection
°

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data

velocity.

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2022

Indirection
°

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data

velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra
level of indirection in order to

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2022

Indirection
°

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data

velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra
level of indirection in order to
Decouple Logical and Physical Locations of Records to
Reduce Index Maintenance

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2022

Indirection
[I}

Traditional Multi-version Indexing: Updating Records

HDD
4 1 J “
y '
NS Op
4
RID Index RID Index
Record Version ID

Updating random leaf pages

Mohammad Sadoghi (UC Davis) L-Store

ECS165a - 2022

Indirection
[I}

Traditional Multi-version Indexing: Updating Records

RID Index RID Index

Updating random leaf pages

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2022

Indirection
[I}

Traditional Multi-version Indexing: Updating Records

HDD

/

RID Index

RID Index

Updating random leaf pages

Mohammad Sadoghi (UC Davis)

L-Store

ECS165a - 2022

Indirection
[I}

Traditional Multi-version Indexing: Updating Records

HDD

RID Index

RID Index

Updating random leaf pages

Mohammad Sadoghi (UC Davis)

L-Store

ECS165a - 2022

Indirection
oce

Indirection Indexing: Updating Records

HDD

RID Index RID Index

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2022

Indirection
oce

Indirection Indexing: Updating Records

RID Index RID Index
HDD

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2022

Indirection
oce

Indirection Indexing: Updating Records

LID: Logical Identifier RID: Record Identifier

SSD

LID Inde LID Index

Indirection Index
(LtoR Mapping)

Mohammad Sadoghi (UC Davis) L-Store

ECS165a - 2022

Indirection
oce

Indirection Indexing: Updating Records

LID: Logical Identifier RID: Record Identifier
SSD

*

LID Index .
HDD Tail (append-only)

Vi)
.

1
/4 ?

v
1
y

4

s

/

¢
é

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2022

Indirection
oce

Indirection Indexing: Updating Records

LID: Logical Identifier RID: Record Identifier
SSD

-
®

LID Index .
HDD T% (append-onty)

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2022

Indirection
oce

Indirection Indexing: Updating Records

LID: Logical Identifier RID: Record Identifier
SSD

LID Index HDD \ T!ﬁl (append-only)
(L BE

Eliminating random leaf-page updates

Mohammad Sadoghi (UC Davis) L-Store ECS165a - 2022

L-Store
°

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Mohammad Sadoghi ECS165A 6/16

L-Store
°

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

Mohammad Sadoghi ECS165A 6/16

L-Store
°

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)

Mohammad Sadoghi ECS165A 6/16

Points to
Stable RID

RID In-page Lineage Tacking

Tail Pages
(Append-only) Latest Base Pages
Ve

(Read-only)

RID.

—

Lineage Mapping

Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)
7/16

Mohammad Sadoghi ECS165A

(LSA): Intuition

Monotonically
Increasing Lineage
(updates are assigned RIDs
in an increasing order)

Points to
Stable RIDs
(ie., anchored RID)

RID;

Tail Pages
(Append-only) Latest

RID «—Yersion |
o

In-page Lineage Tacking

Base Pages
(Read-only)

Append-only
Updates

(physical update
independence)

—

Lineage Mapping

___|
Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi ECS165A 7/16

Monotonically
Increasing Lineage
(updates are assigned RIDs
in an increasing order)

RID;

Tail Pages
(Append-only)

RID.

indep

Append-only
Updates

(physical update

Monotonically Increasing
In-page Lineage

Lazy Update
Consolidation
(snapshot reconstruction via lineage
mapping & in-page tracking)

Points to
Stable RIDs
(ie., anchored RID)

In-page Lineage Tacking

Latest Base Pages | ..o L\neageTackmg

(Read-only) g

Data Block RIDs’
Remain Unchanged
(stable reference, anchored RIDs)

—

Lineage Mapping

Physical Update Independence: De-coupling data & its updates
(reconstruction via in-page lineage tracking and lineage mapping)

Mohammad Sadoghi

ECS165A

7/16

Columnar Storage

— Base Pages
I I (read-only)
U = @
> — Tail Pages
2 mEul (append-only)
g
E M _— l_J =
., =
a =]

L

Range
‘ Partitioning

Record
(spanning over a set of aligned columns)

Overview of the lineage-based storage architecture
(base pages and tail pages are handled identically at the storage layer)

Mohammad Sadoghi

ECS165A 8/16

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

o
il L
TCT T —
ST

Columnar Storage

Base Pages
(read-only)

I ——
Records are range-partitioned and compressed into a set of ready-only base pages
(accelerating analytical queries)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

Corresponding
Write Optimized Columns

(uncompressed, append-only updates)

=" o
I e |

. Base Pages
Tail Pages (read-only)
(append-only)

Updated Columns

I ——
Recent updates for a range of records are clustered in their tails pages
(transforming costly point updates into an amortized analytical-like query)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Detailed Design

Read Optimized

Updated “Columns (compressed, read-only pages)

Different Versions
of the Record

(Ia:aeI;tR::rc;riin) m =x - " Base Record
U (older version)
Write Optimized D H El I I
(uncompressed, append-only updates)
Base Pages

Tail Pages (read-only)
(append-only)

I ——
Recent updates for a range of records are clustered in their tails pages
(transforming costly point updates into an amortized analytical-like query)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

Pre-allocated Space

o = — |] U i:I:I:I
Write Optimized D H El I I
(uncompressed, append-only updates)

|
O L] |

Base Pages

Tail Pages (read-only)
(append-only)

Recent updates are strictly appended, uncompressed in the pre-allocated space
(eliminating the read/write contention)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

[0 = — = _— = H
[T 7 U
U0 .
- Forward Pointer to the M
Write Optimized Latest Version of the Record
(uncompressed, append-only updates)

N :Huu||
o

Indirection Column
(back pointer to the previous version)

Indirection Column
(uncompressed, in-place update)

I ——
Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

Oo-—m-—-— A
' U f I I
[nm - '] L

Write Optimized New Version D H El I I
(uncompressed, append-only updates) L

Indirection Column
(back pointer to the previous version)

o T

Indirection Column
(uncompressed, in-place update)

I ——
Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

Indirection Column
(back pointer to the previous version)

e S =5
]
Backward »C LI ' U i:I:I:I
Pointer r -
Write Optimized New Version D H El I I
(uncompressed, append-only updates) L

o T

Indirection Column
(uncompressed, in-place update)

Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Contention-free Merge

Read Optimized
(compressed, read-only pages)

—) — I = /AN =
- ' — I A , ‘i—i i:I:I:I
C T r u
Write Optimized D H El I I
(uncompressed, append-only updates) L

Consecutive Set of — L
Committed Updates DD: = = = D D El I I

D I D l o Indirection Column
(uncompressed, in-place update)

Merge Queue
(tail pages to be merged)

0
[
0
0

[
[
[

Contention-free merging of only stable data: read-only and committed data
(no need to block on-going and new transactions)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Contention-free Merge

Read Optimized

Asynchronous Lazy Merge
itted. i d (compressed, read-only pages)

—

—) — I = /AN =
- ' — I A , ‘i—i i:I:I:I
C = r u
Write Optimized D H El I I
(uncompressed, append-only updates) L

D I D lO o Indirection Column
(uncompressed, in-place update)

Merge Queue
(tail pages to be merged)

(

0
[
0
0

] (I
0
[
[
[

Lazy independent merging of base pages with their corresponding tail pages
(resembling a local left outer-join of the base and tail pages)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Contention-free Merge

Read Optimized
In-page, Independent (compressed, read-only pages)
Lineage Tracking

Asynchronous Lazy Merge
D) D
e R = /AN =
- ' — | A , ‘ILi i:I:I:I
C T J u
Write Optimized [l H El I I
(uncompressed, append-only updates) L

|t

\
(I
0
[
0
0

[

Indirection Column
(uncompressed, in-place update)

Independently tracking the lineage information within every page
(no need to coordinate merges among different columns of the same records)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Epoch-based Contention-free De-allocation

_— S Read Optimized
Page Directory ——__ (compressed, read-only pages)

| I
J
[

HE—=
J - g
Epoch-based De-allocation [L
(longest running query) == o
Write Optimized M = =
(uncompressed, append-only updates) D

Asynchronous Lazy Merge L
Indirection Column

N
EI > I = (uncompressed, in-place update)
N
___|

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Epoch-based Contention-free De-allocation

_— S Read Optimized
Page Directory ——__ (compressed, read-only pages)

Epoch-based De-allocation
(longest running query) =

[

Write Optimized
(uncompressed, append-only updates)

—) O]

In-page, Independent

— — D D El I I Lineage Tracking

|
]
0
0
[

)
==
I
(- A e
I n

Indirection Column
(uncompressed, in-place update)

Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Epoch-based Contention-free De-allocation

__— Read Optimized
Page Directory ~ ——__ (compressed, read-only pages)

IEI —) _ S /N —
| :) v
Epoch-based De-allocation [¥ L\
(longest running query) = _ M D H El I I
Write Optimized M N

(uncompressed, append-only updates)

D

I

(I
0
[
0
0

|
I
0
[—
[
[
J

Asynchronous Lazy Merge (|

8-

I ——
Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Indirection Column
(uncompressed, in-place update)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Epoch-based Contention-free De-allocation

__— —~ Read Optimized
Page Directory ~ ——__ (compressed, read-only pages)

: IS S L
i

D

Epoch-based De-allocation I i L
(longest running query) = — D H El I I
= = e N
H [l

|t

Write Optimized
(uncompressed, append-only updates)

(I
0

Asynchronous Lazy Merge L

8-

I ——
Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Indirection Column
(uncompressed, in-place update)

Mohammad Sadoghi ECS165A 9/16

L-Store
°

L-Store: Epoch-based Contention-free De-allocation

Read Optimized
__— Page Directory ~ —__ (compressed, read-only pages)

In-page, Independent

— D H El I I Lineage Tracking
jonng

o T

(longest running query) —

Write Optimized
(uncompressed, append-only updates)

[
Epoch-based De-allocation : l id

(I
0

Asynchronous Lazy Merge L

it

I ——
Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)

Indirection Column
(uncompressed, in-place update)

Mohammad Sadoghi ECS165A 9/16

Evaluation
°

Experimental Analysis

Mohammad Sadoghi ECS165A 10/16

Evaluation
°

Experimental Settings

m Hardware:

2 x 6-core Intel(R) Xeon(R) CPU E5-2430 @ 2.20GHz, 64GB, 15 MB L3 cache

m Workload: Extended Microsoft Hekaton Benchmark

Comparison with In-place Update + History and Delta + Blocking Merge
Effect of varying contention levels

Effect of varying the read/write ratio of short update transactions

Effect of merge frequency on scan

Effect of varying the number of short update vs. long read-only transactions
Effect of varying L-Store data layouts (row vs. columnar)

Effect of varying the percentage of columns read in point queries
Comparison with log-structured storage architecture (LevelDB)

Mohammad Sadoghi ECS165A 11/16

Evaluation
.

Effect of Varying Co tion Levels

—&—L-Store -e-L-Store

< 0.8 In-place Update + History ’\i In-place Update + History
a Delta +Blocking Merge ¢ 15 Delta +Blocking Merge
g 3
s 06 =
= s 1
% 0.4 £
g g
£02 | ¢ £ 05

0 0

0 5 10 15 20 25 0 5 10 15 20 25
Number of Parallel Short Update Transactions Number of Parallel Short Update Transactions

Achieving up to 40x as increasing the update contention

Mohammad Sadoghi ECS165A 12/16

Evaluation
°

Effect of Merge Frequency on Scan Performance

Mixed OLTP + OLAP Workload; Low Contention

25 (1 Scan + 1 Merge Threads, Page Size = 32 KB)

[Scan Performance

1.5 (4 Update Threads)
1 M Scan Performance
(14 Update Threads)
0 ! H mE A = =H
4K 8K 16K 32K 64K

Number of Tail Records Processed per Merge

Scan Execution Time (in seconds)

I ——
Merge process is essential in maintaining efficient scan performance

Mohammad Sadoghi ECS165A 13 /16

Evaluation
.

Effect of Mixed Workloads: Update Performance

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

M Lineage-based Data
Store (L-Store)

M In-place Update +
0.4 History
0.2 I M Delta + Blocking
Merge
LAl Huw Hmm HEm Him
1 4 8 12 16

Number of Parallel Update Transactions

Update Throughput (million of txn/s)

I ——
Eliminating latching & locking results in a substantial performance improvement

Mohammad Sadoghi ECS165A 14 /16

Evaluation
.

Effect of Mixed Workloads: Read Performance

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

800
M Lineage-based Data

Store (L-Store)
600

M In-place Update +
400

History
200 M Delta + Blocking
II Merge
0 |1 I ||| . L1

1

Read Throughput (txn/s)

5
Number of Parallel Read -only Transactlons

I ——
Coping with tens of update threads with a single merge thread

Mohammad Sadoghi ECS165A 14 /16

Conclusions
®0

L-Store Key Contributions

m Unifying OLAP & OLTP by introducing lineage-based storage
architecture (LSA)

m LSA is a native multi-version, columnar storage model that lazily &
independently stages data from a write-optimized layout into a
read-optimized one

m Contention-free merging of only stable data without blocking ongoing
or incoming transactions

m Contention-free page de-allocation without draining ongoing
transactions

m L-Store outperforms in-place update & delta approaches by factor of up
to 8x on mixed OLTP/OLAP workloads and up to 40x on
update-intensive workloads

Mohammad Sadoghi ECS165A 15/16

Conclusions
oce

Questions?
Thank youl!

Exploratory Systems Lab (ExpoLab)
Website:

-
k"/ Expolab (3 JResilient08

Security, Privacy Reloaded

Mohammad Sadoghi ECS165A 16 /16

	L-Store Storage Architecture
	L-Store CC
	L-Store Storage Architecture

