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Motivations
.

One Size Does not Fit All As of 2012
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One Size Does not Fit All As of 2017
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Data Management at Microscale: Volume & Velocity
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Motivations
°

Storage Layout Conflict
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Row-based Storage (compressed, read-only pages) . mnar Storage
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Write-optimized (i.e., uncompressed & row-based) vs. read-optimized (i.e.,
compressed & column-based) layouts
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Indirection
°

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data

velocity.
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Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases,
the cost of index maintenance becomes a major obstacle to cope with data

velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra
level of indirection in order to
Decouple Logical and Physical Locations of Records to
Reduce Index Maintenance
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Indirection
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Traditional Multi-version Indexing: Updating Records
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Indirection
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Indirection Indexing: Updating Records
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L-Store
°

Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).
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Unifying OLTP and OLAP: Velocity & Volume Dimensions

Observed Trends

In operational databases, there is a pressing need to close the gap between
the write-optimized layout for OLTP (i.e., row-wise) and the
read-optimized layout for OLAP (i.e., column-wise).

Introducing a lineage-based storage architecture, a contention-free update
mechanism over a native columnar storage in order to

lazily and independently stage stable data from a write-optimized layout
(i.e., OLTP) into a read-optimized layout (i.e., OLAP)
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(LSA): Intuition
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Columnar Storage
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L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)
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Records are range-partitioned and compressed into a set of ready-only base pages
(accelerating analytical queries)
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L-Store: Detailed Design
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L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)
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Recent updates are strictly appended, uncompressed in the pre-allocated space
(eliminating the read/write contention)
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L-Store: Detailed Design
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Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi ECS165A 9/16



L-Store
°

L-Store: Detailed Design

Read Optimized
(compressed, read-only pages)

Oo-—m-—-— A
' U f I I
[ nm - ' ] L

Write Optimized New Version D H El I I
(uncompressed, append-only updates) L

Indirection Column
(back pointer to the previous version)

o T

Indirection Column
(uncompressed, in-place update)

I ——
Achieving (at most) 2-hop access to the latest version of any record
(avoiding read performance deterioration for point queries)

Mohammad Sadoghi ECS165A 9/16



L-Store
°

L-Store: Detailed Design
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L-Store
°

L-Store: Contention-free Merge
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Contention-free merging of only stable data: read-only and committed data
(no need to block on-going and new transactions)
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L-Store
°

L-Store: Contention-free Merge
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Lazy independent merging of base pages with their corresponding tail pages
(resembling a local left outer-join of the base and tail pages)
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L-Store
°

L-Store: Contention-free Merge
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Independently tracking the lineage information within every page
(no need to coordinate merges among different columns of the same records)
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L-Store
°

L-Store: Epoch-based Contention-free De-allocation
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Contention-free page de-allocation using an epoch-based approach
(no need to drain the ongoing transactions)
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L-Store: Epoch-based Contention-free De-allocation
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Evaluation
°

Experimental Analysis
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Evaluation
°

Experimental Settings

m Hardware:

2 x 6-core Intel(R) Xeon(R) CPU E5-2430 @ 2.20GHz, 64GB, 15 MB L3 cache

m Workload: Extended Microsoft Hekaton Benchmark

Comparison with In-place Update + History and Delta + Blocking Merge
Effect of varying contention levels

Effect of varying the read/write ratio of short update transactions

Effect of merge frequency on scan

Effect of varying the number of short update vs. long read-only transactions
Effect of varying L-Store data layouts (row vs. columnar)

Effect of varying the percentage of columns read in point queries
Comparison with log-structured storage architecture (LevelDB)
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Evaluation
.

Effect of Varying Co tion Levels

—&—L-Store -e-L-Store
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= s 1
% 0.4 £
g g
£02 | ¢ £ 05

0 0

0 5 10 15 20 25 0 5 10 15 20 25
Number of Parallel Short Update Transactions Number of Parallel Short Update Transactions

Achieving up to 40x as increasing the update contention
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Evaluation
°

Effect of Merge Frequency on Scan Performance

Mixed OLTP + OLAP Workload; Low Contention

25 (1 Scan + 1 Merge Threads, Page Size = 32 KB)

[ Scan Performance

1.5 (4 Update Threads)
1 M Scan Performance
(14 Update Threads)
0 ! H mE A = =H
4K 8K 16K 32K 64K

Number of Tail Records Processed per Merge

Scan Execution Time (in seconds)

I ——
Merge process is essential in maintaining efficient scan performance
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Evaluation
.

Effect of Mixed Workloads: Update Performance

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

M Lineage-based Data
Store (L-Store)

M In-place Update +
0.4 History
0.2 I M Delta + Blocking
Merge
LAl Huw Hmm HEm Him
1 4 8 12 16

Number of Parallel Update Transactions

Update Throughput (million of txn/s)

I ——
Eliminating latching & locking results in a substantial performance improvement
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Evaluation
.

Effect of Mixed Workloads: Read Performance

Mixed OLTP + OLAP Workload; Medium Contention
(Total of 17 Threads + 1 Merge Thread, Page Size = 32 KB)

800
M Lineage-based Data

Store (L-Store)
600

M In-place Update +
400

History
200 M Delta + Blocking
II Merge
0 |1 I ||| . L1

1

Read Throughput (txn/s)

5
Number of Parallel Read -only Transactlons

I ——
Coping with tens of update threads with a single merge thread
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Conclusions
®0

L-Store Key Contributions

m Unifying OLAP & OLTP by introducing lineage-based storage
architecture (LSA)

m LSA is a native multi-version, columnar storage model that lazily &
independently stages data from a write-optimized layout into a
read-optimized one

m Contention-free merging of only stable data without blocking ongoing
or incoming transactions

m Contention-free page de-allocation without draining ongoing
transactions

m L-Store outperforms in-place update & delta approaches by factor of up
to 8x on mixed OLTP/OLAP workloads and up to 40x on
update-intensive workloads
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Conclusions
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Questions?
Thank youl!

Exploratory Systems Lab (ExpoLab)
Website:
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Security, Privacy Reloaded
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