

L-Store Concurrency Control: QueCC

Slides are adopted from Qadah, Sadoghi

QueCC - A Queue-Oriented, Control-Free Concurrency Architecture, ACM Middleware 2018

ECS 165A – Winter 2023

Mohammad Sadoghi
Exploratory Systems Lab
Department of Computer Science

Hardware Trends

Large core counts

Large main-memory

HPE Superdome Server 144 physical cores 6TB of RAM

^{*}Image source: https://www.hpe.com/us/en/servers/superdome.html

Popularity of Key-value Stores

No multi-statement transactions

Weak consistency

Weak isolation

High-Contention Workloads

Challenge ???

High number of contented operations

State-of-the-Art Concurrency Control Protocols

- Optimized for multi-core hardware and mainmemory databases
- Non-deterministic

CC	Class	Year
SILO	Optimistic CC	SOSP '13
TICTOC	Timestamp Ordering	SIGMOD '16
FOEDUS- MOCC	Optimistic CC	VLDB '16
ERMIA	MVCC	SIGMOD '16
Cicada	MVCC	SIGMOD '17

Performance Under High-Contention

Optimize-for-multi-core concurrency control techniques suffer under high-contention due to increasing abort rate

Performance Under High-Contention

Under high-contention: Non-deterministic aborts dominates

Performance Under High-Contention

Under high-contention: Non-deterministic aborts dominates

Abort Count: 0

Client Transactions

W₄(b) W₃(b) W₂(b) r₁(a)

r₄(d) r₃(c) r₂(a) W₁(b)

each color presents a transaction

Worker
Thread #2

Abort Count: 0

Client Transactions

w₄(b) w₃(b)

r₄(d) r₃(c)

Abort Count: 0

Client Transactions

W₄(b) W₃(b)

r₄(d) r₃(c)

Abort Count: 0

Client Transactions

W₄(b) W₃(b)

r₄(d) r₃(c)

Abort Count: 0

Client Transactions

w₄(b)w₃(b)r₄(d)r₃(c)

Abort transaction (to avoid potential deadlocks)

Abort Count: 1

Client Transactions

w4(b)

r₄(d)

r₁(a)

 $W_1(b)$

Abort transaction (to avoid potential deadlocks)

Abort Count: 2

Client Transactions

w₃(b)

r₁(a)

w₃(c)

w₁(b)

Abort transaction (to avoid potential deadlocks)

Abort Count: 3

Client Transactions

w₄(b) w₃(b) r₁(a)

r₄(d) r₃(c) w₁(b)

Abort Count: 3

Client Transactions

r₁(a)

 $W_1(b)$

Committed Transactions

w₂(b)

r₂(a)

Abort Count: 3

Client Transactions

r₁(a)

 $W_1(b)$

Abort Count: 3

Client Transactions

r₁(a)

w₁(b)

Abort transaction (to avoid potential deadlocks)

Committed Transactions

w₂(b)

r₂(a)

Abort Count: 4

Client Transactions

w₄(b)

r₄(d)

Abort Count: 4

Client Transactions

w₄(b)

r₄(d)

Committed Transactions w₂(b) r₂(a)

Abort Count: 4

Client Transactions

w₄(b)

Worker
Thread #1

w3(b)
r3(c)

Abort Count: 4

Client Transactions

w₄(b)

Worker
Thread #1

w₃(b)
r₃(c)

Abort Count: 4

Client Transactions

w₄(b)

conflict!
Worker

Worker Thread #1

Thread #2

Committed Transactions

w₂(b)

r₂(a)

Abort Count: 4

Client Transactions

w₄(b)

Worker
Thread #1

w3(b)

r3(c)

Abort transaction (to avoid potential deadlocks)

Committed Transactions

w₂(b)

r₂(a)

Abort Count: 5

Client Transactions

W₄(b)

r₄(d)

r₁(a)

W₁(b)

Abort Count: 5

Client Transactions

Abort Count: 5

Client Transactions

Worker
Thread #1

- Eventually transactions commit in some serial order!
- Many aborts due to high contention on record b
- Non-determinism in CC cause these aborts
- Wasted work

Key Insights

- Many aborts due to high contention
- Non-determinism in CC cause these aborts

- Can we do better?
- Is it possible to eliminate non-deterministic concurrency control from transaction execution?

Deterministic Transaction Execution

- H-Store [Kallman et al. '08]
- Designed and optimized for horizontal scalability, multi-core hardware and in-memory databases
- Stored procedure transaction model
- Static partitioning of database
- Assigns a single core to each partition
- Execute transaction serially without concurrency control within each partition

H-Store

Abort Count: 0

P1 is assigned to Worker Thread #1

Worker
Thread #1

a P1 b P2 d

 $w_4(d)$ $w_3(b)$ $w_2(c)$ $r_1(a)$ $r_4(c)$ $r_3(a)$ $r_2(d)$ $w_1(b)$

Client Transactions

Single-partition transactions

Worker
Thread #2

P2 is assigned to Worker Thread #2

Abort Count: 0

Client Transactions

w₄(d) w₃(b)r₄(c) r₃(a)

Worker
Thread #1 w₁(b)

Abort Count: 0

Client Transactions

w₄(d) w₃(b)r₄(c) r₃(a)

Worker
Thread #1

Worker Thread #2

Abort Count: 0

Client Transactions

Abort Count: 0

Client Transactions

Abort Count: 0

Client Transactions

Worker Thread #1

- **Deterministic Execution**
- No aborts because of CC
- Minimal coordination among threads
- Performs well only when transactions are single-partitioned

Effect of Increasing Percentage of Multi-Partition Transactions in the Workload

H-Store is sensitive to the percentage of multi-partition transactions in the workload

Can We Do Better?

Our motivations are

- Efficiently exploits multi-core and large main-memory systems
- Provide serializable multi-statement transactions for key-value stores
- Scales well under high-contention workloads

Desired Properties

- Concurrent execution over shared data
- Not limited to partitionable workloads
- Without any concurrency controls

Is it possible to have concurrent execution over shared data without having any concurrency controls?

Introducing: QueCC

Queue-Oriented, Control-Free, Concurrency Architecture

A two parallel & independent phases of priority-driven planning & execution

Phase 1: Deterministic priority-based planning of transaction operations in parallel

- → Plans take the form of Prioritized Execution Queues
- Execution Queues inherits predetermined priority of its planner
- → Results in a deterministic plan of execution

Phase 2: Priority driven execution of plans in parallel

Satisfies the Execution Priority Invariance

"For each record (or a queue), operations that belong to higher priority queues (created by a higher priority planner) must always be executed before executing any lower priority operations."

Priority-based Parallel Planning Phase

Batching Client Transactions

Priority-based Parallel Planning Phase

Priority-based Parallel Planning Phase

Queue-oriented Parallel Execution Phase

Abort Count: 0

Client Transactions $w_4(b) w_3(b) w_2(b) r_1(a)$ $r_4(d) r_3(c) r_2(a) w_1(b)$

Planning Thread #1

Abort Count: 0

Client Transactions

W₄(b)

V₄(d)

W₂(b)

V₂(a)

Planning
Thread #1

w₁(a)

w₁(b)

Abort Count: 0

Client Transactions

w₄(b)

w₂(b)

r₄(d)

r₂(a)

Planning Thread #1

Abort Count: 0

Client Transactions

Abort Count: 0

Planning Thread #2

Client Transactions

Planning Thread #1

Prioritized Execution

Queues

Abort Count: 0

Client Transactions

Execution
Thread #1

Abort Count: 0

Execution
Thread #2

w₂(b)

w₁(b)

Client Transactions

Execution
Thread #1

r₂(a)

r₁(a)

Execution Priority Invariance

Abort Count: 0

Execution
Thread #2

Client Transactions

Execution
Thread #1

Execution Priority Invariance

Abort Count: 0

Execution
Thread #2

w₄(b)

w₃(b)

Client Transactions

Execution
Thread #1

Execution Priority Invariance

Abort Count: 0

Client Transactions

Execution
Thread #1

Abort Count: 0

Client Transactions

Abort Count: 0

Execution
Thread #2

Client Transactions

Execution
Thread #1

Abort Count: 0

Execution
Thread #1

- ✓ Deterministic Execution
- √ No aborts because of CC
- ✓ Minimal coordination among threads
- ✓ Not sensitive to multi-partition transactions
- ✓ Exploits Intra-transaction parallelism

ResilientDB Blockchain Fabric

Evaluation Environment

Microsoft Azure instance with 32 core

CPU: Intel Xeon E5-2698B v3

32KB L1 data an instruction caches

256KB L2 cache

40MB L3 cache

RAM: 448GB

Hardware

Workload YCSB: 1 table,10 operations, 50% RMW, Zipfian distribution

TPCC: 9 tables, Payment and NewOrder, 1 Warehouse

Software Operating System: Ubuntu LTS 16.04.3

Compiler: GCC with -O3 compiler optimizations

Effect of Varying Contention

5 write and 5 read operation per transaction

Workload contention resiliency Cache locality under high-contention

Effect of Varying Worker Threads

5 write and 5 read operation per transaction

Avoiding thread coordination & eliminating all execution-induced aborts

Effect of Increasing Percentage of Multi-Partition Transactions in the Workload

Effect of Increasing Percentage of Multi-Partition Transactions in the Workload

QueCC is not sensitive to multi-partitioning

TPC-C Results

1 Warehouse (highly contended workload) 50% Payment + 50% NewOrder transaction mix

QueCC can achieve up to 3x better performance on high-contention TPC-C workloads

QueCC Conclusions

- √ Efficient, parallel and deterministic in-memory transaction processing
- √ Eliminates almost all aborts by resolving transaction conflicts a priori
- √ Works extremely well under high-contention workloads

Plan Local and Remote Execution Queues

What's Next: QBFT

What's Next: QBFT

