Storage & Indexing
in Modern Databases

ECS 165A - Winter 2023

Mohammad Sadoghi

Exploratory Systems Lab
Department of Computer Science

. UCDAVIS

UNIVERSITY OF CALIFORNIA

Expolab

Creativity Unfolded

G] ResilientD8

How to quickly search for the desired information?

Searching for 76

EONE
00‘

Searching for 76

EONE
00‘

Searching for 76

EONE

Searching for 76

Searching for 76

Searching for 76

EONE
00‘

i

Searching for 76

Searching for 76

\ Searching for 76

‘ Searching for 76

Searching for 76

Searching for 442
(what-if the value does not exist)
(could we have an early termination?)

® o0

o o
0o ? %4
@

Could we impose an order to improve the search?

L]
--~—_—’

18

Searching for 76

m B2 23334 43 55 56 6 66 71 74 76 B 84 91 99
Jr—

Searching for 76

DONBDIPEHOGEIB OB ®
- 7

Searching for 442
(could we have an early termination?)

Could we impose a structure to further improve the search?

N N
- N

- N

Searching for 76

L

~ - . B

@@ @ e 6 @6 6 6 77 7 @ & 9

Searching for 76

- /< - = B
e
=) /

26

- N

28

Searching for 76

-

@@ @ e e @6 6 6 77 7e B & 9

Searching for 76

l
A@

0000000000000@0000

Searching for 442
(could we have an early termination?)

-

Searching for 76-91

|

L > L

w w9

Could we spread the data cleverly to improve the search?

hashtable

Hashing (é) =7

(returns a value
between 1ton,
where n is the
number of buckets)

bucket
—

B

Hashing (‘) =6

Inserting 81

35

Hashing (‘)
=10

Inse
rting
43

36

Hashing (‘) =8

Inserting 76

37

Inserting 91

~
collisions
(when multiple values
Hashing () =10 hash to the same bucket)

collisions
(when multiple values
hash to the same bucket)

39

Searching for 76
(now we can have a constant lookup cost)

@ecreecareee

Hashing (@) =8

56/
99
)
E
55

Searching for 76-912
Could we instead search for
76, 77,78, ..., 90, 912

Hashing (176) =8 @

Hashing (177) =1

Hashing (178) =3 @
E
55

Hashing ((81) =6

| 84

Hashing ((84) =7 76

l B

Hashing (‘g0) =8 @ o

Hashing ((91) =10

Searching for 76-91
Could we instead search for
76, 77,78, ..., 90, 912

Hashing (76) =8 @

Hashing (177) =1

Hashing (178) =3

Hashing ((81) =6

@eeee

! 84

Hashing ((84) =7 76

l 3

Hashing ((90') =8 @ o1

Hashing ((91) =10

Searching for 76-91

How about 76.01, 76.02, 76.03, ...2

(simply not practical)

43

Could we imagine a new design to support searching
for a range of values efficiently?

Let’s promote a subset of values as seeds

[34 71 9]

45
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Let’s promote a subset of values as seeds

[34 71 91]
o

Suppose every value points to
> its next larger value

geeceee®

46
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Searching for 76-91

sorted seeds

[34 71 9]
o

%

o1

@ees=

47
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Searching for 76-91

sorted seeds

[34@91]
o

Find the largest seed smaller than 76: @

%

91

@ees=

48
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Hashing (@) =3

Searching for 76-91

sorted seeds

___________ [34@91]

Find the largest seed smaller than 76: @

> then simply follow the pointers to
find all values between 76-91

o1

@eerzree e

49
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Hashing ((79)

10

Inserting 79

o

7

eeeeeee

R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

50

Hashing (@) =3

Inserting 79

sorted seeds

[34@91]

s

Find the largest seed smaller than 79: @

7

eeeeeee

51
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Inserting 79

eexee

sorted seeds

[34@91]

Hashing (@) =3

(3

Find the largest seed smaller than 79: @

" adjust the pointers accordingly

Hashing () =10

geeeee

52
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303

Database Storage Layouts
(how likely that we need an index for range queries?)

database pages
(containing a set of records)

[Name: Alice, Age:21, Major: CS]

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]

Row-based Layout

database pages

(containing a set of records)
[Name]

—

Major]

[Name: Alice, Age:21, Major: CS]

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]

LA RN RNERE
LR TR
JANRERNERE

Row-based Layout Column-based Layout

[Name: Alice, Age:21, Major: CS]

| |
| |
‘ [Name: Bob, Age:21, Major: CS] ‘
| |
| |

 [Name: Joe, Age:23, Major: EE] |

‘ [Name: Alex, Age:24, Major: EE] ‘

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout

database pages
(containing a set of records)

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]

e

—
N
-

—_

Bl DERERDEEDR:

g2Ell DONENEE

—
wn
2

<

—

gelEll DORERHEd:

Column-based Layout

56

Searching for all students between the age of 21 to 24

(may return many students)
[Name] [Age]

[Name: Alice, Age:21, Major: CS]

| |
| |
‘ [Name: Bob, Age:21, Major: CS] ‘
| |
| |

il NRNENERERED

 [Name: Joe, Age:23, Major: EE] |

[Joe]

—
wn
2

<

—

EEE00 BNNERNEENE
2eEll DONeNRECeli:

‘ [Name: Alex, Age:24, Major: EE] ‘

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout Column-based Layout

Searching for all students between the age of 21 to 24
(may return many students)

| | [Name] [Age] [Major]
| | [] [1] [|
| | [] [1] L]
cs
[Name: Alice, Age:21, Major: CS] Index on Age IEI
|
[1] [1] L]
[1] [1] [|
| [
| /0 £ []
| [Name: Bob, Age:21, Major: CS]
| [] [1] L]
|
[1] [1] [|
| [1] [1] L]
| | [EE] |
|
| [Name: Joe, Age:23, Major: EE] [Alex] [24] [CS]
o] [Bs] [feEL

| [Name: Alex, Age:24, Major: EE]

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout Column-based Layout **

I I I I S I S S B S S S D S B B S S .y,

Searching for all students between the age of 21 to 24

e ————— - (may return many students)
| | \ [Name] [Age] [Major]
| | I Em e
| | BN BN B
[cs

|[Name: Alice, Age:21, Major: CS] I Index on Age E
| B B B

/0 [[]
| (Bl
| BN B Bm
| [Name: Bob, Age:21, Major: CS]
| B B [
|

/0 [[]
| /0 [[]
| C[EE]
o A e [Alex] [24] [cS]

ame: Joe, Age:23, Major:
[Sally]
| [Name: Alex, Age:24, Major: EE] I IEI IEI
| [Name: Sally, Age:25, Major: EE] | I
/

________ -

Row-based Layout Column-based Layout

59

I I I I S I S S B S S S D S B B S S .y,

Searching for all students between the age of 21 to 24

e ——————— - (may return many students)
| \ [Name] ((age] | [Major]
| | | e ' []
: | | e ' []
| [Aice] [| | [cs] |
|[Name: Alice, Age:21, Major: CS] | Index on Age | I 5]
| e 'mm' e
] : LT
| NN
| BN Em .
|[Name: Bob, Age:21, Major: CS] D I D I D
| I]
| I I
N 1]
| N 1]
| [Deel] 1[[&111 [EE]
[Alex] I [1241 |1 [cS]
|[Name: Joe, Age:23, Major: EE] [Sally] I @ I @

| [Name: Alex, Age:24, Major: EE]

| [Name: Sally, Age:25, Major: EE] |

-

y Alternatively read only the Age

———————— -~ column to find the relevant values

Row-based Layout Column-based Layout *°

I I I I S I S S B S S S D S B B S S .y,

[Name: Alice, Age:21, Major: CS]

|
|
| [Name: Bob, Age:21, Major: CS]
|
|

| [Name: Joe, Age:23, Major: EE]

| [Name: Alex, Age:24, Major: EE]

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout

Searching for all students between the age of 21 to 24

(may return many students)

Index on Age

Is an index really useful here?

[Name]

01 BNNERNEEN

[Joe]

[Alex]
[Sally]

(lage] |
| !
| !

I [[23] i
I [T2s1 1

[Maj

Y
S—

[*}

=
Rl

g2eEll PREbedEnelE

Column-based Layout

61

Searching for all students over the age of 24

(may return only a few students)
[Name] ([Age] |

| | [Major]
| | o 'mm
| | I ' =
[
' [Name: Alice, Age:21, Major: CS] | Index on Age I E I
| |
Bl '
[] | HE' B
| | goal
| | I = .
| [Name: Bob, Age:21, Major: CS] | I I
| | I = -
P BN ' e
[| I 1
1 | weal] I[@mI) [
[
I |[Name: Joe, Age:23, Major: EE] | [[I; lael)lj] I % : %
I |[Name: Alex, Age:24, Major: EE] | |
[| [Name: Sally, Age:25, Major: EE] [
\ |
N o e e e e e o e 7’

Row-based Layout Column-based Layout *

Searching for all students over the age of 24

(may return only a few students)
[Name] ([Age] |

| | [Major]
| | — B U
| |] | =
|[Name: Alice, Age:21, Major: CS] | Index on Age | | =l
| |
Bl '
[] | '
| | : (]!
| | E Em -
| [Name: Bob, Age:21, Major: CS] | I I
| | - I . i
| | I |
I— R N
() K N 1
L F : | [IEel]
[
| |[Name: Joe, Age:23, Major: EE] | [[I;I:I:j] I % : %
[' [Name: Alex, Age:24, Major: EE] | I COUId we instead employ - - -
I | [Name: Sally, Age:25, Major: EE] [. . . .
\) hashing with the seeding idea?

Row-based Layout Column-based Layout “

Thank You
Questions?

