Storage & Indexing
in Modern Databases

ECS 165A - Winter 2023

Mohammad Sadoghi

Exploratory Systems Lab
Department of Computer Science

. UCDAVIS

UNIVERSITY OF CALIFORNIA

Expolab

Creativity Unfolded

G] ResilientD8




How to quickly search for the desired information?
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Searching for 442
(what-if the value does not exist)
(could we have an early termination?)
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Could we impose an order to improve the search?
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Searching for 76
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Searching for 442
(could we have an early termination?)




Could we impose a structure to further improve the search?
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Searching for 76
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Searching for 76
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Searching for 76
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Searching for 76
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Searching for 442
(could we have an early termination?)
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Searching for 76-91
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Could we spread the data cleverly to improve the search?



hashtable

Hashing (é) =7

(returns a value
between 1ton,
where n is the
number of buckets)
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Hashing (‘) =6

Inserting 81
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Hashing (‘) =8

Inserting 76
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Inserting 91

~
collisions
(when multiple values
Hashing () =10 hash to the same bucket)



collisions
(when multiple values
hash to the same bucket)
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Searching for 76
(now we can have a constant lookup cost)
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Searching for 76-912
Could we instead search for
76, 77,78, ..., 90, 912



Hashing (176 ) =8 @

Hashing (177 ) =1

Hashing (178 ) =3 @
E
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Hashing ((81) =6
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Hashing ((84 ) =7 76
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Hashing (‘g0 ) =8 @ o

Hashing ((91) =10

Searching for 76-91
Could we instead search for
76, 77,78, ..., 90, 912



Hashing (76 ) =8 @

Hashing (177 ) =1

Hashing (178 ) =3

Hashing ((81) =6
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Hashing ((84 ) =7 76

l 3

Hashing ((90') =8 @ o1

Hashing ((91) =10

Searching for 76-91

How about 76.01, 76.02, 76.03, ...2

(simply not practical)
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Could we imagine a new design to support searching
for a range of values efficiently?



Let’s promote a subset of values as seeds

[ 34 71 9 ]

45
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303



Let’s promote a subset of values as seeds

[ 34 71 91 ]
o

Suppose every value points to
> its next larger value

geeceee®
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R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303



Searching for 76-91

sorted seeds

[ 34 71 9 ]
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R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303



Searching for 76-91

sorted seeds

[34@91]
o

Find the largest seed smaller than 76: @

%
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R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303



Hashing (@) =3

Searching for 76-91

sorted seeds

___________ [34@91]

Find the largest seed smaller than 76: @

> then simply follow the pointers to
find all values between 76-91

o1

@eerzree e

49
R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303



Hashing ((79)
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Inserting 79
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R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303
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Hashing (@) =3

Inserting 79

sorted seeds

[34@91]

s

Find the largest seed smaller than 79: @

7
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R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303



Inserting 79

eexee

sorted seeds

[34@91]

Hashing (@) =3

(3

Find the largest seed smaller than 79: @

" adjust the pointers accordingly

Hashing () =10

geeeee
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R-Hash- In-memory latch-free index structure B Bhattacharjee, M Canim, M. Sadoghi, US Patent 9,858,303



Database Storage Layouts
(how likely that we need an index for range queries?)



database pages
(containing a set of records)

[Name: Alice, Age:21, Major: CS]

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]

Row-based Layout



database pages

(containing a set of records)
[Name]

—

Major]

[Name: Alice, Age:21, Major: CS]

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]
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Row-based Layout Column-based Layout



[Name: Alice, Age:21, Major: CS]

| |
| |
‘ [Name: Bob, Age:21, Major: CS] ‘
| |
| |

 [Name: Joe, Age:23, Major: EE] |

‘ [Name: Alex, Age:24, Major: EE] ‘

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout

database pages
(containing a set of records)

a database record, e.g.,
[Name: Alice, Age:21, Major: CS]
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Column-based Layout
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Searching for all students between the age of 21 to 24

(may return many students)
[Name] [Age]

[Name: Alice, Age:21, Major: CS]

| |
| |
‘ [Name: Bob, Age:21, Major: CS] ‘
| |
| |

il NRNENERERED

 [Name: Joe, Age:23, Major: EE] |

[Joe]
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‘ [Name: Alex, Age:24, Major: EE] ‘

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout Column-based Layout



Searching for all students between the age of 21 to 24
(may return many students)

| | [Name] [Age] [Major]
| | [ ] [ 1] [ |
| | [ ] [ 1] L]
cs
[Name: Alice, Age:21, Major: CS] Index on Age IEI
|
[ 1] [ 1] L]
[ 1] [ 1] [ |
| [
| /0 £ [ ]
| [Name: Bob, Age:21, Major: CS]
| [ ] [ 1] L]
|
[ 1] [ 1] [ |
| [ 1] [ 1] L]
| | [EE] |
|
| [Name: Joe, Age:23, Major: EE] [Alex] [24] [CS]
o] [Bs]  [feEL

| [Name: Alex, Age:24, Major: EE]

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout Column-based Layout  **
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Searching for all students between the age of 21 to 24

e ————— - (may return many students)
| | \ [Name] [Age] [Major]
| | I Em e
| | BN BN B
[ cs

|[Name: Alice, Age:21, Major: CS] I Index on Age E
| B B B

/0 [ [ ]
| (Bl
| BN B Bm
| [Name: Bob, Age:21, Major: CS]
| B B [
|

/0 [ [ ]
| /0 [ [ ]
| C[EE]
o A e [Alex] [24] [cS]

ame: Joe, Age:23, Major:
[Sally]
| [Name: Alex, Age:24, Major: EE] I IEI IEI
| [Name: Sally, Age:25, Major: EE] | I
/

________ -

Row-based Layout Column-based Layout
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Searching for all students between the age of 21 to 24

e ——————— - (may return many students)
| \ [Name] ( (age] | [Major]
| | | e ' [ ]
: | | e ' [ ]
| [Aice] [ | | [cs] |
|[Name: Alice, Age:21, Major: CS] | Index on Age | I 5]
| e 'mm' e
] : LT
| NN
| BN Em .
|[Name: Bob, Age:21, Major: CS] D I D I D
| I ]
| I I
N 1 ]
| N 1 ]
| [Deel]  1[[&111 [EE]
[Alex] I [ 1241 |1 [cS]
|[Name: Joe, Age:23, Major: EE] [Sally] I @ I @

| [Name: Alex, Age:24, Major: EE]

| [Name: Sally, Age:25, Major: EE] |

-

y Alternatively read only the Age

———————— -~ column to find the relevant values

Row-based Layout Column-based Layout  *°
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[Name: Alice, Age:21, Major: CS]

|
|
| [Name: Bob, Age:21, Major: CS]
|
|

| [Name: Joe, Age:23, Major: EE]

| [Name: Alex, Age:24, Major: EE]

| [Name: Sally, Age:25, Major: EE] |

Row-based Layout

Searching for all students between the age of 21 to 24

(may return many students)

Index on Age

Is an index really useful here?

[Name]
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Column-based Layout
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Searching for all students over the age of 24

(may return only a few students)
[Name] ( [Age] |

| | [Major]
| | o 'mm
| | I ' =
[
' [Name: Alice, Age:21, Major: CS] | Index on Age I E I
| |
Bl '
[ ] | HE' B
| | goal
| | I = .
| [Name: Bob, Age:21, Major: CS] | I I
| | I = -
P BN ' e
[ | I 1
1 | weal] I[@mI) [
[
I |[Name: Joe, Age:23, Major: EE] | [[I; lael)lj] I % : %
I |[Name: Alex, Age:24, Major: EE] | |
[ | [Name: Sally, Age:25, Major: EE] [
\ |
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Row-based Layout Column-based Layout  *



Searching for all students over the age of 24

(may return only a few students)
[Name] ( [Age] |

| | [Major]
| | — B U
| | ] | =
|[Name: Alice, Age:21, Major: CS] | Index on Age | | =l
| |
Bl '
[ ] | '
| | : (]!
| | E Em -
| [Name: Bob, Age:21, Major: CS] | I I
| | - I . i
| | I |
I— R N
() K N 1
L F : | [IEel]
[
| |[Name: Joe, Age:23, Major: EE] | [[I;I:I:j] I % : %
[ ' [Name: Alex, Age:24, Major: EE] | I COUId we instead employ - - -
I | [Name: Sally, Age:25, Major: EE] [ . . . .
\ ) hashing with the seeding idea?

Row-based Layout Column-based Layout  “



Thank You
Questions?



