
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Concurrency Control
Chapter 17

Mohammad Sadoghi
Exploratory Systems Lab
Department of Computer Science

ECS 165A – Winter 2023

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Conflict Serializable Schedules
❖ Serial schedule: Schedule that does not interleave the actions

of different transactions.
❖ Equivalent schedules: For any database state, the effect (on the

set of objects in the database) of executing the first schedule
is identical to the effect of executing the second schedule.

❖ Serializable schedule: A schedule that is equivalent to some
serial execution of the transactions.

❖ Two schedules are conflict equivalent if:
▪ Involve the same actions of the same transactions
▪ Every pair of conflicting actions is ordered the same way

❖ Schedule S is conflict serializable if S is conflict equivalent to
some serial schedule

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Example
❖ A schedule that is not conflict serializable:

T1:	 R(A), W(A), 	 	 	 R(B), W(B)

T2:	 	 	 R(A), W(A), R(B), W(B)

❖ The cycle in the graph reveals the problem. The
output of T1 depends on T2, and vice-versa.

T1 T2
A

B
Dependency graph

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Dependency Graph
❖ Dependency graph: One node per Xact; edge

from Ti to Tj if Tj reads/writes an object last
written by Ti.

❖ Theorem: Schedule is conflict serializable if
and only if its dependency graph is acyclic

T1:	 R(A), W(A), 	 	 	 R(B), W(B)

T2:	 	 	 R(A), W(A), R(B), W(B)

T1 T2
A

B
Dependency graph

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Review: Strict 2PL
❖ Strict Two-phase Locking (Strict 2PL) Protocol:

▪ Each Xact must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

▪ All locks held by a transaction are released when
the transaction completes

▪ If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

❖ Strict 2PL allows only schedules whose
precedence graph is acyclic

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Two-Phase Locking (2PL)

❖ Two-Phase Locking Protocol
▪ Each Xact must obtain a S (shared) lock on object

before reading, and an X (exclusive) lock on object
before writing.

▪ A transaction can not request additional locks once
it releases any locks.

▪ If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

View Serializability
❖ Schedules S1 and S2 are view equivalent if:

▪ If Ti reads initial value of A in S1, then Ti also reads initial
value of A in S2 (initial values)

▪ If Ti reads value of A written by Tj in S1, then Ti also reads
value of A written by Tj in S2 (intermediate values)

▪ If Ti writes final value of A in S1, then Ti also writes final
value of A in S2 (final values)

T1: R(A)	 W(A)

T2:	 W(A)

T3:	 	 W(A)

T1: R(A),W(A)

T2:	 W(A)

T3:	 	 W(A)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Lock Management

❖ Lock and unlock requests are handled by the lock
manager

❖ Lock table entry:
▪ Number of transactions currently holding a lock
▪ Type of lock held (shared or exclusive)
▪ Pointer to queue of lock requests

❖ Locking and unlocking have to be atomic operations
❖ Lock upgrade: transaction that holds a shared lock

can be upgraded to hold an exclusive lock

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Deadlocks

❖ Deadlock: Cycle of transactions waiting for
locks to be released by each other.

❖ Two ways of dealing with deadlocks:
▪ Deadlock prevention
▪ Deadlock detection

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Deadlock Prevention

❖ Assign priorities based on timestamps. Assume
Ti wants a lock that Tj holds. Two policies are
possible:
▪ Wait-Die: It Ti has higher priority, Ti waits for Tj;

otherwise Ti aborts
▪ Wound-wait: If Ti has higher priority, Tj aborts;

otherwise Ti waits
❖ If a transaction re-starts, make sure it has its

original timestamp (why?)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Deadlock Detection

❖ Create a waits-for graph:
▪ Nodes are transactions
▪ There is an edge from Ti to Tj if Ti is waiting for Tj

to release a lock
❖ Periodically check for cycles in the waits-for

graph

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B)
T3:
T4:

T1 T2

T4 T3

There is an edge from Ti to Tj if Ti is
waiting for Tj to release a lock

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C)
T4:

T1 T2

T4 T3

There is an edge from Ti to Tj if Ti is
waiting for Tj to release a lock

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C)
T4: X(B)

T1 T2

T4 T3

There is an edge from Ti to Tj if Ti is
waiting for Tj to release a lock

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)

There is an edge from Ti to Tj if Ti is
waiting for Tj to release a lock

T1 T2

T4 T3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Multiple-Granularity Locks

❖ Hard to decide what granularity to lock
(tuples vs. pages vs. tables).

❖ Shouldn’t have to decide!
❖ Data “containers” are nested:

Tuples

Tables

Pages

Database

contains

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Solution: New Lock Modes, Protocol

❖ Allow Xacts to lock at each level, but with a
special protocol using new “intention” locks:

• Before locking an item, Xact
must set “intention locks” on all
its ancestors (i.e., top-bottom).

• For unlock, go from specific to
general (i.e., bottom-up).

• SIX mode: Like S & IX at the
same time.

-- IS IX

--

IS

IX

√

√

√

√ √

√

S X

√

√
S

X

√ √

√

√

√

√ √

√

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Multiple Granularity Lock Protocol
❖ Each Xact starts from the root of the hierarchy.
❖ To get S or IS lock on a node, must hold IS or IX on

parent node.
▪ What if Xact holds SIX on parent? S on parent?

❖ To get X or IX or SIX on a node, must hold IX or SIX
on parent node.

❖ Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting

locks at the leaf levels of the hierarchy.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Examples
❖ T1 scans R, and updates a few tuples:
▪ T1 gets an SIX lock on R and occasionally upgrades

to X on the tuples.
❖ T2 uses an index to read only part of R:
▪ T2 gets an IS lock on R, and repeatedly gets an S

lock on tuples of R.
❖ T3 reads all of R:
▪ T3 gets an S lock on R.
▪ OR, T3 could behave like T2; can

use lock escalation to decide which.

-- IS IX

--

IS

IX

√

√

√

√ √

√

S X

√

√
S

X

√ √

√

√

√

√ √

√

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Dynamic Databases
❖ If we relax the assumption that the DB is a fixed

collection of objects, even Strict 2PL will not assure
serializability:
▪ T1 locks all pages containing sailor records with rating = 1,

and finds oldest sailor (say, age = 71).
▪ Next, T2 inserts a new sailor; rating = 1, age = 96.
▪ T2 also deletes oldest sailor with rating = 2 (and, say, age = 80),

and commits.
▪ T1 now locks all pages containing sailor records with rating =

2, and finds oldest (say, age = 63).
❖ There is no consistent DB state where T1 is “correct”!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

The Problem
❖ T1 implicitly assumes that it has locked the

set of all sailor records with rating = 1.
▪ Assumption only holds if no sailor records are

added while T1 is executing!
▪ Need some mechanism to enforce this assumption.

(Index locking and predicate locking.)
❖ Example shows that conflict serializability

guarantees serializability only if the set of
objects is fixed!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Index Locking
❖ If there is a dense index on the rating field using

Alternative (2), T1 should lock the index page
containing the data entries with rating = 1.
▪ If there are no records with rating = 1, T1 must lock the

index page where such a data entry would be, if it existed!
❖ If there is no suitable index, T1 must lock all pages,

and lock the file/table to prevent new pages from
being added, to ensure that no new records with
rating = 1 are added.

r=1

Data
Index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Predicate Locking

❖ Grant lock on all records that satisfy some
logical predicate, e.g. age > 2*salary.

❖ Index locking is a special case of predicate
locking for which an index supports efficient
implementation of the predicate lock.
▪ What is the predicate in the sailor example?

❖ In general, predicate locking has a lot of
locking overhead.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Optimistic CC (Kung-Robinson)

❖ Locking is a conservative (pessimistic) approach
in which conflicts are prevented. Disadvantages:
▪ Lock management overhead.
▪ Deadlock detection/resolution.
▪ Lock contention for heavily used objects.

❖ If conflicts are rare, we might be able to gain
concurrency by not locking, and instead
checking for conflicts before Xacts commit.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Kung-Robinson Model
❖ Xacts have three phases:
▪ READ: Xacts read from the database, but

make changes to private copies of objects.
▪ VALIDATE: Check for conflicts.
▪ WRITE: Make local copies of changes

public.

ROOT

current

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Kung-Robinson Model
❖ Xacts have three phases:
▪ READ: Xacts read from the database, but

make changes to private copies of objects.
▪ VALIDATE: Check for conflicts.
▪ WRITE: Make local copies of changes

public.

ROOT

old

modified

objects

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Kung-Robinson Model
❖ Xacts have three phases:
▪ READ: Xacts read from the database, but

make changes to private copies of objects.
▪ VALIDATE: Check for conflicts.
▪ WRITE: Make local copies of changes

public.

ROOT

old

new
modified

objects

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Validation
❖ Test conditions that are sufficient to ensure that

no conflict occurred.
❖ Each Xact is assigned a numeric id.

▪ Just use a timestamp.
❖ Xact ids assigned at end of READ phase, just

before validation begins. (Why then?)
❖ ReadSet(Ti): Set of objects read by Xact Ti.
❖ WriteSet(Ti): Set of objects modified by Ti.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Test 1

❖ For all i and j such that Ti < Tj, check that Ti
completes before Tj begins.

Ti
TjR V W

R V W

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Test 2

❖ For all i and j such that Ti < Tj, check that:
▪ Ti completes before Tj begins its Write phase +

▪ WriteSet(Ti) ReadSet(Tj) is empty.

Ti

Tj
R V W

R V W

Does Tj read dirty data? Does Ti overwrite Tj’s writes?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Test 3
❖ For all i and j such that Ti < Tj, check that:
▪ Ti completes Read phase before Tj does +

▪ WriteSet(Ti) ReadSet(Tj) is empty +

▪ WriteSet(Ti) WriteSet(Tj) is empty.

Ti

Tj
R V W

R V W

Does Tj read dirty data? Does Ti overwrite Tj’s writes?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Comments on Serial Validation
❖ Assignment of Xact id, validation, and the

Write phase are inside a critical section!
▪ I.e., Nothing else goes on concurrently.
▪ If Write phase is long, major drawback.

❖ Optimization for Read-only Xacts:
▪ Don’t need critical section (because there is no

Write phase).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Overheads in Optimistic CC

❖ Must record read/write activity in ReadSet and
WriteSet per Xact.
▪ Must create and destroy these sets as needed.

❖ Must check for conflicts during validation, and
must make validated writes ``global’’.
▪ Critical section can reduce concurrency.
▪ Scheme for making writes global can reduce clustering

of objects.
❖ Optimistic CC restarts Xacts that fail validation.
▪ Work done so far is wasted; requires clean-up.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

``Optimistic’’ 2PL (analogous to 2VCC)

❖ If desired, we can do the following:
▪ Set S locks as usual.
▪ Make changes to private copies of objects.
▪ Obtain all X locks at end of Xact, make writes global,

then release all locks.
❖ In contrast to Optimistic CC as in Kung-Robinson, this

scheme results in Xacts being blocked, waiting for
locks.
▪ However, no validation phase, no restarts (modulo

deadlocks).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Timestamp CC

❖ Idea: Give each object a read-timestamp (RTS)
and a write-timestamp (WTS), give each Xact
a timestamp (TS) when it begins:
▪ If action ai of Xact Ti conflicts with action aj

of Xact Tj, and TS(Ti) < TS(Tj), then ai must
occur before aj. Otherwise, restart violating
Xact.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

When Xact T wants to Read Object O
❖ If TS(T) < WTS(O), this violates timestamp order of T

w.r.t. writer of O.
▪ So, abort T and restart it with a new larger TS.

(If restarted with same TS, T will fail again! Contrast use of
timestamps in 2PL for deadlock prevention.)

❖ If TS(T) > WTS(O):
▪ Allow T to read O.
▪ Reset RTS(O) to max(RTS(O), TS(T))

❖ Change to RTS(O) on reads must be written to disk! This
and restarts represent overheads.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

When Xact T wants to Write Object O
❖ If TS(T) < RTS(O), this violates timestamp order

of T w.r.t. writer of O; abort and restart T.
❖ If TS(T) < WTS(O), violates timestamp order of T

w.r.t. writer of O.
▪ Thomas Write Rule: We can safely ignore such outdated

writes; need not restart T! (T’s write is effectively followed
by another write, with no intervening reads.) Allows some
serializable but non conflict serializable schedules:

❖ Else, allow T to write O. T1 	 T2

R(A)

	 W(A)

	 Commit

W(A)

Commit

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 38

Timestamp CC and Recoverability

❖ Timestamp CC can be modified to allow only recoverable
schedules (any similarity to 2VCC?):
▪ Buffer all writes until writer commits (but update

WTS(O) when the write is allowed.)
▪ Block readers T (where TS(T) > WTS(O)) until writer of

O commits.
❖ Similar to writers holding X locks until commit, but still

not quite 2PL.

 T1 	 T2

W(A)

	 R(A)

	 W(B)

	 Commit

• Unfortunately, unrecoverable
schedules are allowed:

Read is aborted if TS(T) < WTS(O)
Write is aborted if TS(T) < RTS(O) or TS(T) < WTS(O)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39

Multiversion Timestamp CC
(Any Similarity to L-Store?)

Idea: Let writers make a “new” copy while
readers use an appropriate “old” copy:

O

MAIN

SEGMENT

(Current

versions of

DB objects)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 40

Multiversion Timestamp CC
(Any Similarity to L-Store?)

Idea: Let writers make a “new” copy while
readers use an appropriate “old” copy:

O O’

O’’

MAIN

SEGMENT

(Current

versions of

DB objects)

VERSION

POOL

(Older versions that

may be useful for

some active readers.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 41

Multiversion Timestamp CC
(Any Similarity to L-Store?)

Idea: Let writers make a “new” copy while
readers use an appropriate “old” copy:

O O’

O’’

MAIN

SEGMENT

(Current

versions of

DB objects)

VERSION

POOL

(Older versions that

may be useful for

some active readers.)

Readers are always allowed to proceed.

But may be blocked until writer commits.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 42

Multiversion CC (Contd.)

❖ Each version of an object has its writer’s TS as
its WTS, and the TS of the Xact that most
recently read this version as its RTS.

❖ Versions are chained backward; we can discard
versions that are “too old to be of interest”.

❖ Each Xact is classified as Reader or Writer.
▪ Writer may write some object; Reader never will.
▪ Xact declares whether it is a Reader when it begins.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43

Reader Xact
❖ For each object to be read:
▪ Finds newest version with WTS < TS(T). (Starts

with current version in the main segment and
chains backward through earlier versions.)

❖ Assuming that some version of every object exists
from the beginning of time, Reader Xacts are never
restarted.
▪ However, might block until writer of the appropriate

version commits.

T

old newWTS timeline

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 44

Writer Xact
❖ To read an object, follows reader protocol.
❖ To write an object:
▪ Finds newest version V s.t. WTS < TS(T).
▪ If RTS(V) < TS(T),
▪ T makes a copy CV of V, with a pointer to V,

with WTS(CV) = TS(T), RTS(CV) = TS(T).
▪ Write is buffered until T commits; other Xacts

can see TS values but can’t read version CV.
▪ Else, reject write.

T

old newWTS
CV

V
RTS(V)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 45

Transaction Support in SQL-92

❖ Each transaction has an access mode, a
diagnostics size, and an isolation level.

NoNoNoSerializable

MaybeNoNoRepeatable Reads

MaybeMaybeNoRead Committed

MaybeMaybeMaybeRead Uncommitted

Phantom  
Problem

Unrepeatable
Read

Dirty 
Read

Isolation Level

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 46

Summary
❖ There are several lock-based concurrency

control schemes (Strict 2PL, 2PL). Conflicts
between transactions can be detected in the
dependency graph

❖ The lock manager keeps track of the locks
issued. Deadlocks can either be prevented or
detected.

❖ Naïve locking strategies may have the phantom
problem

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 47

Summary (Contd.)
❖ Index locking is common, and affects

performance significantly.
▪ Needed when accessing records via index.
▪ Needed for locking logical sets of records (index

locking/predicate locking).

❖ In practice, better techniques now known; do
record-level, rather than page-level locking.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 48

Summary (Contd.)
❖ Multiple granularity locking reduces the overhead involved

in setting locks for nested collections of objects (e.g., a file of
pages); should not be confused with tree index locking!

❖ Optimistic CC aims to minimize CC overheads in an
``optimistic’’ environment where reads are common and
writes are rare.

❖ Optimistic CC has its own overheads however; most real
systems use locking.

❖ SQL-92 provides different isolation levels that control the
degree of concurrency

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 49

Summary (Contd.)
❖ Timestamp CC is another alternative to 2PL; allows some

serializable schedules that 2PL does not (although
converse is also true).

❖ Ensuring recoverability with Timestamp CC requires
ability to block Xacts, which is similar to locking.

❖ Multiversion Timestamp CC is a variant which ensures
that read-only Xacts are never restarted; they can always
read a suitable older version. Additional overhead of
version maintenance.

