Relational Algebra

Chapter 4

ECS 165A – Winter 2023

Mohammad Sadoghi
Exploratory Systems Lab
Department of Computer Science

UC DAVIS
UNIVERSITY OF CALIFORNIA

Expolab
Creativity Unfolded

ResilientDB
Relational Query Languages

- **Query languages**: Allow manipulation and retrieval of data from a database.

- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.

- Query Languages != programming languages!
 - QLs not expected to be “Turing complete”.
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.
Formal Relational Query Languages

- Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and for implementation:
 - **Relational Algebra**: More operational, very useful for representing execution plans.
 - **Relational Calculus**: Lets users describe what they want, rather than how to compute it. (Non-operational, *declarative*.)
Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the result of a given query is also fixed! Determined by definition of query language constructs.
Example Instances

“Sailors” and “Reserves” relations for our examples.

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

S2

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

R1

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>
Relational Algebra

❖ Basic operations:
 ▪ **Selection** (σ) Selects a subset of rows from relation.
 ▪ **Projection** (Π) Deletes unwanted columns from relation.
 ▪ **Cross-product** (×) Allows us to combine two relations.
 ▪ **Set-difference** (−) Tuples in reln. 1, but not in reln. 2.
 ▪ **Union** (∪) Tuples in reln. 1 and in reln. 2.

❖ Additional operations:
 ▪ Intersection, **join**, division, renaming: Not essential, but (very!) useful.

❖ Since each operation returns a relation, operations can be *composed*! (Algebra is “closed”.)
Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why??)
 - Note: real systems typically don’t do duplicate elimination unless the user explicitly asks for it. (Why not?)

<table>
<thead>
<tr>
<th>sname</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>yuppy</td>
<td>9</td>
</tr>
<tr>
<td>lubber</td>
<td>8</td>
</tr>
<tr>
<td>guppy</td>
<td>5</td>
</tr>
<tr>
<td>rusty</td>
<td>10</td>
</tr>
</tbody>
</table>

\[\pi_{sname, rating}(S2) \]

<table>
<thead>
<tr>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.0</td>
</tr>
<tr>
<td>55.5</td>
</tr>
</tbody>
</table>

\[\pi_{age}(S2) \]
Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation! (Operator composition.)

\[
\sigma_{\text{rating} > 8}(S2)
\]

<table>
<thead>
<tr>
<th>sid</th>
<th>surname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

\[
\pi_{\text{name}, \text{rating}}(\sigma_{\text{rating} > 8}(S2))
\]
Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be **union-compatible**:
 - Same number of fields.
 - ‘Corresponding’ fields have the same type.

- What is the **schema** of result?

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

S1

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
</tbody>
</table>

S2

S1 ∪ S2

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
</tbody>
</table>

S1 ∩ S2

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

S1 − S2

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
</tbody>
</table>
Cross-Product

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names `inherited` if possible.
 - **Conflict:** Both S1 and R1 have a field called sid.

\[
\rho (C(1 \rightarrow \text{sid1}, 5 \rightarrow \text{sid2}), S1 \times R1)
\]
Joins

Condition Join: $R \bowtie_c S = \sigma_c(R \times S)$

Result schema same as that of cross-product.
Fewer tuples than cross-product, might be able to compute more efficiently
Sometimes called a theta-join.
Joins

- **Equi-Join**: A special case of condition join where the condition c contains only equalities.

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[R \bowtie_{sid} S \]

- **Result schema** similar to cross-product, but only one copy of fields for which equality is specified.

- **Natural Join**: Equijoin on all common fields.
Division

- Not supported as a primitive operator, but useful for expressing queries like:

 Find sailors who have reserved all boats.

- Let A have 2 fields, x and y; B have only field y:

 - $A/B = \{ \langle x \rangle | \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B \}$
 - i.e., A/B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an xy tuple in A.
 - Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A/B.

- In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Find sailors who have reserved all boats?

Examples of Division A/B

<table>
<thead>
<tr>
<th>sno</th>
<th>pno</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>p1</td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
</tr>
<tr>
<td>s1</td>
<td>p3</td>
</tr>
<tr>
<td>s1</td>
<td>p4</td>
</tr>
<tr>
<td>s2</td>
<td>p1</td>
</tr>
<tr>
<td>s2</td>
<td>p2</td>
</tr>
<tr>
<td>s3</td>
<td>p2</td>
</tr>
<tr>
<td>s4</td>
<td>p2</td>
</tr>
<tr>
<td>s4</td>
<td>p4</td>
</tr>
</tbody>
</table>

\[A = \begin{array}{|c|c|} \hline \text{sno} & \text{pno} \\ \hline s1 & p1 \\ s1 & p2 \\ s1 & p3 \\ s1 & p4 \\ s2 & p1 \\ s2 & p2 \\ s3 & p2 \\ s4 & p2 \\ s4 & p4 \\ \hline \end{array} \]

\[A/B1 = \begin{array}{|c|c|} \hline \text{pno} \\ \hline p2 \\ \hline \end{array} \]

\[A/B2 = \begin{array}{|c|c|} \hline \text{pno} \\ \hline p2 \\ p4 \\ \hline \end{array} \]

\[A/B3 = \begin{array}{|c|c|} \hline \text{pno} \\ \hline p1 \\ p2 \\ p4 \\ \hline \end{array} \]
Find sailors who have reserved all boats?

\[(A/B)\]

\[
\begin{array}{|c|c|}
\hline
\text{sno} & \text{pno} \\
\hline
s1 & p1 \\
s1 & p2 \\
s1 & p3 \\
s1 & p4 \\
s2 & p1 \\
s2 & p2 \\
s3 & p2 \\
s4 & p2 \\
s4 & p4 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{pno} & \text{sno} \\
\hline
p1 & s1 \\
p2 & s2 \\
p3 & s3 \\
p4 & s4 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{sno} & \text{pno} \\
\hline
s1 & p1 \\
s1 & p2 \\
s1 & p4 \\
s2 & p1 \\
s2 & p2 \\
s2 & p4 \\
s3 & p1 \\
s3 & p2 \\
s3 & p4 \\
s4 & p1 \\
s4 & p2 \\
s4 & p4 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{sno} & \text{pno} \\
\hline
s2 & p4 \\
s3 & p1 \\
s3 & p4 \\
s4 & p1 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{sno} & \text{pno} \\
\hline
s1 & \\
\hline
\end{array}
\]

\[A/B = \pi_{sno}(A) - \pi_{sno}(\pi_{sno}(A) \times B - A)\]

\[A/B = A - \text{disqualified tuples}\]
Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)

- **Idea**: For A/B, compute all x values that are not `disqualified` by some y value in B.
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

Disqualified x values: \(\pi_x ((\pi_x (A) \times B) - A) \)

\[A/B: \pi_x (A) - \text{all disqualified tuples} \]
<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>rating</th>
<th>age</th>
<th>sid</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find names of sailors who’ve reserved boat #103

- **Solution 1:** \(\pi_{\text{name}}((\sigma_{\text{bid}=103}\text{Reserves}) \bowtie \text{Sailors}) \)
- **Solution 2:** \(\rho(\text{Temp1},\sigma_{\text{bid}=103}\text{Reserves}) \)
 \(\rho(\text{Temp2},\text{Temp1} \bowtie \text{Sailors}) \)
 \(\pi_{\text{name}}(\text{Temp2}) \)
- **Solution 3:** \(\pi_{\text{name}}(\sigma_{\text{bid}=103}(\text{Reserves} \bowtie \text{Sailors})) \)
Find names of sailors who’ve reserved a red boat

- Information about boat color only available in Boats; so need an extra join:

\[
\pi_{\text{sname}}((\sigma_{\text{color}='\text{red}'}) \bowtie \text{Reserves} \bowtie \text{Sailors})
\]

- A more efficient solution:

\[
\pi_{\text{sname}}(\pi_{\text{sid}}(\pi_{\text{bid}}(\sigma_{\text{color}='\text{red}'}) \bowtie \text{Reserves} \bowtie \text{Sailors}))
\]

A query optimizer can find this, given the first solution!
Find sailors who’ve reserved a red or a green boat

- Can identify all red or green boats, then find sailors who’ve reserved one of these boats:

\[\rho(Tempboats, (\sigma_{\text{color}='red' \lor \text{color}='green'}Boats)) \]

\[\pi_{\text{fname}}(Tempboats \bowtie Reserves \bowtie Sailors) \]

- Can also define Tempboats using union! (How?)

- What happens if \(\lor \) is replaced by \(\land \) in this query?
Find sailors who’ve reserved a red and a green boat

- Previous approach won’t work! Must identify sailors who’ve reserved red boats, sailors who’ve reserved green boats, then find the intersection (note that sid is a key for Sailors):

\[
\rho(Tempred, \pi_{sid}((\sigma_{\text{color}=\text{`red`}}\text{Boats}) \bowtie \text{Reserves}))
\]

\[
\rho(Tempgreen, \pi_{sid}((\sigma_{\text{color}=\text{`green`}}\text{Boats}) \bowtie \text{Reserves}))
\]

\[
\pi_{sname}((Tempred \cap Tempgreen) \bowtie \text{Sailors})
\]
Find the names of sailors who’ve reserved all boats

- Uses division; schemas of the input relations to / must be carefully chosen:

 \[
 \rho(Tempsids, (\pi_{\text{sid,bid}} \text{Reserves})/ (\pi_{\text{bid}} \text{Boats}))
 \]

 \[
 \pi_{\text{aname}}(\text{Tempsids} \bowtie \text{Sailors})
 \]

- To find sailors who’ve reserved all ‘Interlake’ boats:

 \[
 \ldots / \pi_{\text{bid}} (\sigma \ bname = 'Interlake' \text{Boats})
 \]
Summary

❖ The relational model has rigorously defined query languages that are simple and powerful.
❖ Relational algebra is more operational; useful as internal representation for query evaluation plans.
❖ Several ways of expressing a given query; a query optimizer should choose the most efficient version.