SQL: Queries, Constraints, Triggers

Chapter 5
ECS 165A — Winter 2023

Mohammad Sadoghi

Exploratory Systems Lab
Department of Computer Science

, | UCDAVIS

Database Management Systems 3ed, R. Ramakrishnanand J. Gehrke

Expolab

Creativity Unfolded

Example Instances

<+ We will use these
instances of the
Sailors and Reserves
relations in our
examples.

+ If the key for the
Reserves relation
contained only the
attributes sid and bid,
how would the
semantics differ?

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke

51

52

R1 |sid |bid day
22 (101 |10/10/96
58 1103 [11/12/96
sid |sname |rating age
22 |dustin | 7 45.0
31 |lubber | 8 55.5
58 |rusty 10 [35.0
sid |sname |rating |age
28 | yuppy 9 35.0
31 |lubber | 8 55.5
44 | guppy S 35.0
58 |rusty 10 35.0

Basic S QL Query SELECT [DISTINCT] farget-list
FROM relation-list

WHERE qualification

+ relation-list A list of relation names (possibly with a
range-variable after each name).

% target-list A list of attributes of relations in relation-list

% gualification Comparisons (Attr op const OR Attrl op
Attr2, where op is one of <, >, =, <, =, #) combined
using AND, OR and NOT.

+ DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 3

O
Conceptual Evaluation Strategy

* Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:
» Compute the cross-product of relation-list.
» Discard resulting tuples if they fail qualifications.
 Delete attributes that are not in target-list.

= If DISTINCT is specitied, eliminate duplicate rows.

+ This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 4

sid sname |rating age sid |bid day

22 |dustin | 7 145.0 |[22 /101 |10/10/96
31 |lubber | 8 55.5 |58 1103 |11/12/96

58 |rusty 10 135.0 R1

51
Example of Conceptual Evaluation

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) lsname rating age |(sid) bid |day
22 |dustin | 7 |45.0 | 22 |101 [10/10/96
22 |dustin | 7 |45.0 | 58 |103 |11/12/96
31 |lubber | 8 |55.5 | 22 101 [10/10/96
31 |lubber | 8 |55.5 | 58 |103 [11/12/96
58 |rusty 10 [35.0 22 |101 10/10/96
58 |rusty 10 [35.0 58 |103 11/12/96

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 5

S
A Note on Range Variables

+ Really needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:

SELECT S.sname iy Py
FROM Sailors S, Reserves R 15 §ood style,

WHERE S.sid=R.sid AND bid=103 however, to use
OR range variables

SELECT sname ,
. always!
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid
AND bid=103

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 6

.
Expressions and Strings

SELECT S.age, agel=S.age-5, 2*S.age AS age?2
FROM Sailors S
WHERE S.sname LIKE ‘B_%DB’

+ Illustrates use of arithmetic expressions and string pattern
matching: Find triples (of ages of sailors and two fields defined
by expressions) for sailors whose names begin and end with B
and contain at least three characters.

+ AS and = are two ways to name fields in result.

+ LIKE is used for string matching. =" stands for any one
character and “%’ stands for 0 or more arbitrary characters.

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 7

Find sid’s of sailors who’ve reserved a red or a green boat

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND
(B.color="red” OR B.color="green’)

* If we replace OR by AND in
the first version, what do we
get?

< UNION: Can be used to

compute the union of an
P Y SELECT S.sid

. FROM Sailors S, Boats B, Reserves R
tuples (which are themselves yyprE 5 6id=R.sid AND R.bid=B.bid AND

two union-compatible sets of

the result of SQL queries). B.color="red’
+ Also available: EXCEPT UNION
(What do we get if we .
replace UNION by Sglggi/IT ;Sillirs S, Boats B, Reserves R
EXCEPT?) ’ '

WHERE S.sid=R.sid AND R.bid=B.bid AND
Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke B.Colorz’green’ 8

Find sid’s of sailors who’ve reserved a red and a

green boat SELECT Ssid

FROM Sailors S, Boats B1, Reserves R1,
Boats B2, Reserves R2

WHERE S.sid=R1.sid AND R1.bid=B1.bid AND

INTERSECT: Can be used to
compute the intersection of any
two union-compatible sets of
tuples.

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke

S.sid=R2.sid AND R2.bid=B2.bid AND
(B1l.color="red” AND B2.color="green’)

SELECT S.sid/_\ Key field!
FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid AND
B.color="red’

INTERSECT

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND
B.color="green’ 9

o
Nested Queries

Find names of sailors who’ve reserved boat #103:

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

+ A very powerful feature of SQL: a WHERE clause can itself contain
an SQL query! (Actually, so can FROM and HAVING clauses.)
+ To find sailors who've not reserved #103, use NOT IN.

+ To understand semantics of nested queries, think of a nested loops
evaluation: For each Sailors tuple, check the qualification by computing
the subquery.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

e
Nested Queries with Correlation

Find names of sailors who’ve reserved boat #103:

SELECT S.sname

FROM Sailors S
WHERE EXISTS (SELECT\
FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

+ EXISTS is another set comparison operator, like IN.

+ Illustrates why, in general, sub-query must be re-
computed for each Sailors tuple.

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 11

More on Set-Comparison Operators

* We’ve already seen IN, EXISTS and UNIQUE. Can also
use NOT IN, NOT EXISTS and NOT UNIQUE.

% Also available: op ANY, op ALL, IN >,<,=,z2<#

+ Find sailors whose rating is greater than that of some

sailor called Horatio:
SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S52.sname="Horatio’)

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 12

e o . . FROM S.ailors S
Division in SQL WHERE NOT EXISTS
((SELECT B.bid

FROM Boats B)
Find sailors who've reserved all boats. EXCEPT

+ Let’s do it the hard way, (SELECT R.bid

. FROM Reserves R
without EXCEPT: WHERE R.sid=S.sid))
SELECT S.sname

FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
FROM Boats B

Sailors S such that ... WHERE NOT EXISTS (SELECT R.bid
. | FROM Reserves R
there is no boat B without ... WHERE R.bid=B.bid

a Reserves tuple showing S reserved B AND R.sid=3.sid))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

g ggrega!e !’pera!ors COUNT (*)

COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)

% Significant extension of ~|AVG ([DISTINCT] A)

relational algebra. MAX (A)
MIN (AQ
SELECT COUNT (¥) - single column
FROM Sailors S SELECT *
SELECT AVG (S.age) FROM S
FROM Sailors S WHERE column = (SELECT ... FROM R)

WHERE S.rating=10

SELECT COUNT (DISTINCT S.rating) SgpECT AVG (DISTINCT S.age)
FROM Sailors S FROM Sailors S

WHERE S.sname="Bob’ WHERE S.rating=10

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 14

S
Find name and age of the oldest sailor(s)

SELECT S.sname, MAX (S.age)

+ The first query is illegal! FROM Sailors S

(We’ll look into the reason a

bit later, when we discuss SELECT S.sname, S.age

FROM Sailors S

GROUP BY.)

‘ | . WHERE S.age =

* The third query is (SELECT MAX (S2.age)
equivalent to the second FROM Sailors S2)

query, and is allowed in the
SQL /92 standard, but is not
supported in some systems.

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S52.age)
FROM Sailors S2)
= S.age

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

o
Motivation for Grouping

% 5o tar, we've applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to apply them
to each of several groups of tuples.

% Consider: Find the age of the youngest sailor for each rating
level.

* In general, we don’t know how many rating levels exist, and
what the rating values for these levels are!

= Suppose we know that rating values go from 1 to 10; we can
write 10 queries that look like this (!):

| SELECT MIN (S.age)
Fori=1,2,..,10: FROM Sailors S
WHERE S.rating = i

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

o
Queries With GROUP BY and HAVING

SELECT [DISTINCT] attribute-list, aggregate operations
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

» The attribute list (i) must be a subset of grouping-list. Intuitively,

each answer tuple corresponds to a group, and these attributes
must have a single value per group. (A group is a set of tuples
that have the same value for all attributes in grouping-list.)

» Terms with aggregate operations are of form MIN (S.age)), for
example

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 17

o
Conceptual Evaluation

* The cross-product of relation-list is computed, tuples that fail
qualification are discarded, “unnecessary’ fields are deleted, and
the remaining tuples are partitioned into groups by the value
of attributes in grouping-Ilist.

* The group-qualification is then applied to eliminate some
groups. Expressions in group-qualification must have a single
value per group!

» In effect, an attribute in group-qualification that is not an argument of
an aggregate op also appears in grouping-list. (SQL does not exploit
primary key semantics here!)

% One answer tuple is generated per qualifying group.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Find age of the youngest sailor with age =18,

for each rating with at least 2 such sailors

FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating

HAVING COUNT (*) > 1

SELECT S.rating, MIN (S.age)
AS minage

Sailors instance:

Answer relation:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

rating | minage
3 |25.5
7 135.0
8 125.5

sid | sname |rating | age
22 | dustin 7 145.0
29 | brutus 1 133.0
31 |lubber 8 [55.5
32 |andy 8 [25.5
58 |rusty 10 135.0
64 | horatio 7 135.0
71 | zorba 10 {16.0
74 | horatio 9 |(35.0
85 |art 3 (255
95 | bob 3 163.5
96 | frodo 3 1255

19

Find age of the youngest sailor with age =18,

rating | age
7 |45.0
1 [33.0
8 |55.5
8 125.5
10 [35.0
7 135.0
10 [16.0
9 (35.0
3 |255
3 |63.5
3 (255

rating

age

1

33.0

25.5
63.5
25.5

45.0
35.0

55.5
25.5

O |0 OO0 1] | W W

35.0

ek
-

35.0

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

=)

for each rating with at least 2 such sailors.

rating | minage
3 [25.5
7 135.0
8 [25.5

20

S
Null Values

* Field values in a tuple are sometimes unknown (e.g., a rating
has not been assigned) or inapplicable (e.g., no spouse’s name).

= SQL provides a special value null for such situations.

* The presence of null complicates many issues. E.g.:
* Special operators needed to check if value is/is not null.

* Is rating>8 true or false when rating is equal to null? What about
AND, OR and NOT connectives?

* We need a 3-valued logic (true, false and unknown).

* Meaning of constructs must be defined carefully. (e.g., WHERE clause
eliminates rows that don’t evaluate to true.)

= New operators (in particular, outer joins) possible /needed.

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 21

o
Integrity Constraints (Review)

% An IC describes conditions that every legal instance of a
relation must satisty.
- Inserts/deletes/updates that violate IC’s are disallowed.

= Can be used to ensure application semantics (e.g., sid is a
key), or prevent inconsistencies (e.g., sname has to be a string,
age must be < 200)
% Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general constraints.

= Domain constraints: Field values must be of right type.
Always enforced.

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 22

: (sid INTEGER,
General Constraints -

rating INTEGER,

age REAL,
+ Useful when PRIMARY KEY (sid),
more general ICs CHECK (rating >=1 AND
than keys are CREATE TABLE Reserves rating <=10)
involved. (sname CHAR(10),
% Can use queries bid INTEGER,
to express day DATE,
constraint. PRIMARY KEY (bid,day),
¢ Constraints can CONSTRAINT nolnterlakeRes
be named. CHECK (Interlake” <>

(SELECT B.bnam
FROM DBoats B
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke WHERE Bbld:bld))) 23

Constraints Over Multiple Relations
CREATE TABLE Sailors

(sid INTEGER, Number of boats
sname CHAR(10), plus number of

¢ Awkward and -
rating INTEGER, . :
wrong! & sailors 1s < 100

s age REAL,
% If Sailors is PRIMARY KEY (sid),
empty, the
CHECK

number of Boats
tuples can be ((SELECT COUNT (S.sid) FROM Sailors S)

anything! + (SELECT COUNT (B.bid) FROM Boats B) < 100)

* ASSERTIONisthe -ppaTp ASSERTION smallClub
right solution;

: CHECK
not associated
with either table. ((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 24

Triegers

+ Trigger: procedure that starts automatically if
specified changes occur to the DBMS
* Three parts:
» Event (activates the trigger)
» Condition (tests whether the triggers should run)
 Action (what happens if the trigger runs)

Database Management Systems 3ed, R.Ramakrishnanand J. Gehrke 25

Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS
REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT
INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

o
Summary

+ SQL was an important factor in the early acceptance of
the relational model; more natural than earlier,
procedural query languages.

+ Relationally complete; in fact, significantly more
expressive power than relational algebra.

+ Even queries that can be expressed in RA can often be
expressed more naturally in SQL.

* Many alternative ways to write a query; optimizer
should look for most efficient evaluation plan.

- In practice, users need to be aware of how queries are
optimized and evaluated for best results.

Database Management Systems 3ed, R.Ramakrishnan and J. Gehrke 27

% NULL for unknown field values brings many
complications

+ SQL allows specification of rich integrity
constraints

+ Triggers respond to changes in the database

Database Management Systems 3ed, R.Ramakrishnanand J. Gehrke 28

