
Alejandro Torres, Jenny Wang,
Ho-Chih Ma, Jamie Wu,

Karthik Palanisamy

LTeam Milestone 1

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

Team Member Roles
Leadership Roles:

● Team Coordinators: Jenny, Alejandro
● System Architects: Everyone
● Developers: Everyone
● Testers: Everyone

Implementation and Design Areas:
● Query Evaluation: Jenny, Alejandro, Karthik, Jamie
● Bufferpool Management: Alejandro, Ho-Chih
● Crash, recovery, logging: N/A
● Synchronization and Concurrency: N/A

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

(1) Data Model
Pages
Bagepages and Tailpages
Pageranges
Table

(2) Bufferpool Management
Page Directory
Index Directory

(3) Query Interface
Insert
Update
Select
Sum
Delete

(4) Performance
Btree vs Hash Table vs B+Tree
Pagerange and Page Sizes
Overall Runtime

(5) Live Demo and Q&A

(1) Data Model
Pages
Basepages and Tailpages
Pageranges
Table

Pages

Page 0

Each box stores
1 piece of data

Each box is 8 bytes

● Each Page is 4096 bytes, which can hold
512 records

● Each Page represents a singular data
column

● Choose to use bytearrays instead of
traditional arrays for writing to memory in
future milestones

Basepages and Tailpages

Page 0 Page 1 Page 2 … Page nBasepage:
RID = []
StartTime = []
SchemaEncoding = []
Indirection = []
Pages = [Pages()...]

Tailpage:
RID = []
Indirection = []
Pages = [Pages()...]

● We make a new Basepage or
Tailpage whenever either
exceeds 512 records

Pages
Array

Primary
Key

Record0

Record1
…

Pageranges
Pagerange:

Basepage_Array = [Array of Basepage Objects…]
Tailpage_Array = [Array of Tailpage Objects…]

● Each Pagerange can only hold 16 Basepage Objects
● We ensure Tailpages are the granularity of each

pagerange
…

…

Basepage_Array

Tailpage_Array

Pagerange

Table
Table:

Name
KeyIndex
NumColumns
PageDirectory
Index
IndexOfBasepageArray
IndexOfTailpageArray
PageRangeArray = [Array of Pagerange() objects…]

Overall Purpose of our Data Model:
● Easy to keep track of which Index belongs to

which Table, which Tailpage belongs to
which Pagerange, etc

● Everything that is related is grouped
together by classes

…

…

Basepage_Array

Tailpage_Array

Pagerange0

…

…

Basepage_Array

Tailpage_Array

Pagerange1

…

(2) Bufferpool
Management

Page Directory
Index Directory

Page Directory
Objective: map base page RIDs to the newest version of the record. (Indirection)

● Page Directory is generated each time a record is inserted and updated each time a
record is updated

● We define it as a dictionary, because internally it is implemented as a hash table in
python

Index Class & BTree
Objective: Given a column and its value, return the RIDs associated with

- One Index Per Table
- Indices are BTrees
- Aim to have an index for each column

Limitation: only implemented primary key column

Page 0 Page 1 Page nPrimary
Key

Indices

- For now, each table only has one index
- One BTree for primary key column
- Primary key : RID of the Base Page

(3) Query
Interface
Insert
Update
Select
Sum
Delete

Insert

Two Checks Required:
1. If we’ve hit the max number of records allowed in one

page, then we need to make a new Basepage()
2. If we’ve hit the max number of Basepages allowed in

a pagerange, then we need to make a new
Pagerange()

RID:
● Create record’s RID as a tuple (Index in Pagerange,

Index in Basepage, Index in Page , ‘b’)
BTree:

● Insert primary key:RID into a node

Objective: Insert new record into the Basepage() AND maintain LStore fundamentals

Page 0 Page 1 Page 2 … Page nPrimary
Key

Update
Objective: Update record into the Tailpage() AND maintain LStore fundamentals

Required Check:
1. If we’ve hit the max number of records allowed in a Page, then we make a new Tailpage()

Challenge:
● Updating and maintaining the Indirection column and update lineage

RID:
● Tuple as (Index in Pagerange, Index in Tailpage, Index in Page , ‘t’)

(0, 1, 24, ‘b’) None [1,1,1]

RID Indirection [Primary key, Page0, Page1]

Update(1, (None,2))
(0, 0, 16, ‘t’) (0, 1, 24, ‘b’) [1,1,2]

(0, 1, 24, ‘b’) (0, 0, 16, ‘t’) [1,1,1]

Basepage record

Tailpage record

Original basepage record
(never updated before)

Select
Objective: Based on one known attribute/condition, look up other column data

Syntax: query.select(search_key, search_key_index, projected_columns_index)

Record:
RID
Key
Columns = []

Returns array of
records

Result = {Record 1,
Record 2, …}

Btree
locate()

RIDs page_directory
Most updated
record data
(RID vs TID)

Sum

Locate_range returns a list of RIDS

Note: RIDS are all the newest versions of
the record

Select SUM(key) as total FROM grades_table

Locate_range

Physical page

total

Delete

(4) Performance

Pagerange and Page Sizes

Our final decisions:
● Pagerange Capacity = 16 Basepages
● Page Size = 4096 Bytes (512 Records)

Overall L-Store Performance
Issues: Select query gave us the slowest results.

● Page directory was initially being generated in the select method (very slow)

(5) Live Demo
and Q&A

