LTeam Milestone 1

Alejandro Torres, Jenny Wang, Ho-Chih Ma, Jamie Wu, Karthik Palanisamy
Team Member Roles

Leadership Roles:
- Team Coordinators: Jenny, Alejandro
- System Architects: Everyone
- Developers: Everyone
- Testers: Everyone

Implementation and Design Areas:
- Query Evaluation: Jenny, Alejandro, Karthik, Jamie
- Bufferpool Management: Alejandro, Ho-Chih
- Crash, recovery, logging: N/A
- Synchronization and Concurrency: N/A
[1] Data Model
 Pages
 Bagepages and Tailpages
 Pageranges
 Table

 Page Directory
 Index Directory

[3] Query Interface
 Insert
 Update
 Select
 Sum
 Delete

[4] Performance
 Btree vs Hash Table vs B+Tree
 Pagerange and Page Sizes
 Overall Runtime

[5] Live Demo and Q&A
(1) Data Model

Pages
Basepages and Tailpages
Pageranges
Table
Pages

- Each Page is 4096 bytes, which can hold 512 records
- Each Page represents a singular data column
- Choose to use bytearrays instead of traditional arrays for writing to memory in future milestones
Basepages and Tailpages

Basepage:
- RID = []
- StartTime = []
- SchemaEncoding = []
- Indirection = []
- Pages = [Pages()...]

Tailpage:
- RID = []
- Indirection = []
- Pages = [Pages()...]

- We make a new Basepage or Tailpage whenever either exceeds 512 records
Pageranges

Pagerange:
- Basepage_Array = [Array of Basepage Objects...]
- Tailpage_Array = [Array of Tailpage Objects...]

- Each Pagerange can only hold 16 Basepage Objects
- We ensure Tailpages are the granularity of each pagerange
Overall Purpose of our Data Model:

- Easy to keep track of which Index belongs to which Table, which Tailpage belongs to which Pagerange, etc.
- Everything that is related is grouped together by classes.

Table

<table>
<thead>
<tr>
<th>Name</th>
<th>KeyIndex</th>
<th>NumColumns</th>
<th>PageDirectory</th>
<th>Index</th>
<th>IndexOfBasepageArray</th>
<th>IndexOfTailpageArray</th>
<th>PageRangeArray</th>
</tr>
</thead>
</table>

Page Directory
Index Directory
Page Directory

Objective: map base page RIDs to the newest version of the record. [Indirection]

- Page Directory is generated each time a record is inserted and updated each time a record is updated
- We define it as a dictionary, because internally it is implemented as a hash table in python
Index Class & BTree

Objective: Given a column and its value, return the RIDs associated with
- One Index Per Table
- Indices are BTrees
- Aim to have an index for each column

Limitation: only implemented primary key column
- For now, each table only has one index
- One BTree for primary key column
- Primary key : RID of the Base Page
(3) Query Interface

Insert
Update
Select
Sum
Delete
Insert

Objective: Insert new record into the Basepage() AND maintain LStore fundamentals

Two Checks Required:
1. If we’ve hit the max number of records allowed in one page, then we need to make a new Basepage()
2. If we’ve hit the max number of Basepages allowed in a pagerange, then we need to make a new Pagerange()

RID:
- Create record’s RID as a tuple [Index in Pagerange, Index in Basepage, Index in Page, ‘b’]

BTree:
- Insert primary key:RID into a node
Update

Objective: Update record into the Tailpage[] AND maintain LStore fundamentals

Required Check:
1. If we've hit the max number of records allowed in a Page, then we make a new Tailpage()

Challenge:
- Updating and maintaining the Indirection column and update lineage

RID:
- Tuple as [Index in Pagerange, Index in Tailpage, Index in Page, ‘t’]

<table>
<thead>
<tr>
<th>RID</th>
<th>Indirection [Primary key, Page0, Page1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 1, 24, ‘b’)</td>
<td>None</td>
</tr>
</tbody>
</table>

Original basepage record (never updated before)

Basepage record
- (0, 1, 24, ‘b’) | (0, 0, 16, ‘t’) | [1,1,1]

Tailpage record
- (0, 0, 16, ‘t’) | (0, 1, 24, ‘b’) | [1,1,2]

Update[1, [None,2]]
Select

Objective: Based on one known attribute/condition, look up other column data

Syntax: `query.select(search_key, search_key_index, projected_columns_index)`

Record:
- **RID**
- **Key**
- **Columns = []**

Most updated record data (RID vs TID)

Returns array of records

Result = {Record 1, Record 2, …}
Sum

Select SUM(key) as total FROM grades_table

Locate_range returns a list of RIDS

Note: RIDS are all the newest versions of the record

Physical page

total
Delete
4] Performance
Our final decisions:

- Pagerange Capacity = 16 Basepages
- Page Size = 4096 Bytes (512 Records)
Overall L-Store Performance

Issues: Select query gave us the slowest results.

- Page directory was initially being generated in the select method (very slow)
(5) Live Demo and Q&A