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Team Member Roles
Leadership Roles:

● Team Coordinators: Jenny, Alejandro
● System Architects: Everyone
● Developers: Everyone
● Testers: Everyone

Implementation and Design Areas:
● Query Evaluation: Jenny, Alejandro, Karthik, Jamie
● Bufferpool Management: Alejandro, Ho-Chih
● Crash, recovery, logging: N/A
● Synchronization and Concurrency: N/A

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
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(1) Data Model
Pages
Basepages and Tailpages
Pageranges
Table



Pages

Page 0

Each box stores 
1 piece of data

Each box is 8 bytes

● Each Page is 4096 bytes, which can hold 
512 records

● Each Page represents a singular data 
column

● Choose to use bytearrays instead of 
traditional arrays for writing to memory in 
future milestones



Basepages and Tailpages

Page 0 Page 1 Page 2 … Page nBasepage:
RID = []
StartTime = []
SchemaEncoding = []
Indirection = []
Pages = [Pages()...]

Tailpage:
RID = []
Indirection = []
Pages = [Pages()...]

● We make a new Basepage or 
Tailpage whenever either 
exceeds 512 records

Pages 
Array

Primary 
Key

Record0

Record1
…



Pageranges
Pagerange:

Basepage_Array = [Array of Basepage Objects…]
Tailpage_Array = [Array of Tailpage Objects…]

● Each Pagerange can only hold 16 Basepage Objects
● We ensure Tailpages are the granularity of each 

pagerange
…

…

Basepage_Array

Tailpage_Array

Pagerange



Table
Table:

Name
KeyIndex
NumColumns
PageDirectory
Index
IndexOfBasepageArray
IndexOfTailpageArray
PageRangeArray = [Array of Pagerange() objects…]

Overall Purpose of our Data Model:
● Easy to keep track of which Index belongs to 

which Table, which Tailpage belongs to 
which Pagerange, etc

● Everything that is related is grouped 
together by classes

…

…

Basepage_Array

Tailpage_Array

Pagerange0

…

…

Basepage_Array

Tailpage_Array

Pagerange1

…



(2) Bufferpool 
Management

Page Directory
Index Directory



Page Directory
Objective: map base page RIDs to the newest version of the record. (Indirection)

● Page Directory is generated each time a record is inserted and updated each time a 
record is updated

● We define it as a dictionary, because internally it is implemented as a hash table in 
python



Index Class & BTree
Objective: Given a column and its value, return the RIDs associated with

- One Index Per Table
- Indices are BTrees
- Aim to have an index for each column

Limitation: only implemented primary key column

Page 0 Page 1 Page nPrimary 
Key

Indices

- For now, each table only has one index
- One BTree for primary key column
- Primary key : RID of the Base Page 



(3) Query 
Interface
Insert
Update
Select
Sum
Delete



Insert

Two Checks Required:
1. If we’ve hit the max number of records allowed in one 

page, then we need to make a new Basepage()
2. If we’ve hit the max number of Basepages allowed in 

a pagerange, then we need to make a new 
Pagerange()

RID:
● Create record’s RID as a tuple (Index in Pagerange, 

Index in Basepage, Index in Page , ‘b’)
BTree:

● Insert primary key:RID into a node

Objective: Insert new record into the Basepage() AND maintain LStore fundamentals

Page 0 Page 1 Page 2 … Page nPrimary 
Key



Update
Objective: Update record into the Tailpage() AND maintain LStore fundamentals

Required Check:
1. If we’ve hit the max number of records allowed in a Page, then we make a new Tailpage()

Challenge:
● Updating and maintaining the Indirection column and update lineage

RID:
● Tuple as (Index in Pagerange, Index in Tailpage, Index in Page , ‘t’)

(0, 1, 24, ‘b’) None [1,1,1]

RID Indirection [Primary key, Page0, Page1]

Update( 1, (None,2) )
(0, 0, 16, ‘t’) (0, 1, 24, ‘b’) [1,1,2]

(0, 1, 24, ‘b’) (0, 0, 16, ‘t’) [1,1,1]

Basepage record

Tailpage record

Original basepage record
(never updated before)



Select
Objective: Based on one known attribute/condition, look up other column data

Syntax: query.select(search_key, search_key_index, projected_columns_index)

Record:
RID
Key
Columns = []

Returns array of 
records

Result = {Record 1, 
Record 2, …}

Btree 
locate()

RIDs page_directory
Most updated 
record data 
(RID vs TID)



Sum

Locate_range returns a list of RIDS

Note: RIDS are all the newest versions of 
the record

Select SUM(key) as total FROM grades_table 

Locate_range

Physical page

total



Delete



(4) Performance



Pagerange and Page Sizes

Our final decisions:
● Pagerange Capacity = 16 Basepages
● Page Size = 4096 Bytes (512 Records)



Overall L-Store Performance
Issues: Select query gave us the slowest results.

● Page directory was initially being generated in the select method (very slow)



(5) Live Demo 
and Q&A


