
L-STORE DATABASE - MILESTONE 2
ECS 165A
TEAM: CAN'T-STORE

HANSON LAU, CHRISTOPHER PHAN, IVAN CVJETINOVIC, DANIEL MEDINA, NAMAN SHETH



TOPICS

Durability and Bufferpool

Data Reorg

Indexing



Durability and Bufferpool

File Structure

Retrieving Pages

Eviction Strategy

Bufferpool



File Structure
db

tables

page_ranges

pages

physical pages

catalog page_directory

index

page_ranges_metadata

col0 col1 col2 col3 col4

Path: <db_name>/<table_name>/page_range<#>/page<#>/col<#>



Helper Files

page_directory and index:
persisted using pickle

page_ranges_metadata:
Holds "<page_range_num> <latest_bp_num> <latest_tp_num>"

catalog:
Holds "<table_name, num_columns, key_column, num_records>"

e.g.:
Grades 5 0 6000
Students 4 0 991
Staff 6 0 34

e.g.:
0 5 18
1 15 16
2 4 40



PhysicalPage's
path

PhysicalPage's
path

PhysicalPage's
path

PhysicalPage's
path

PhysicalPage's
path

PhysicalPage's
path

Bufferpool: self.lru_pages
Least recently used

Most recently used

Implemented using a queue data structure.

The most recently used pages are at the end of the
queue and the least recently used are at the beginning.



PhysicalPage
pin_count = 0
is_dirty = False

PhysicalPage
pin_count = 0
is_dirty = True

PhysicalPage
pin_count = 1

is_dirty = False

Empty Frame
PhysicalPage
pin_count = 3

is_dirty = False

PhysicalPage
pin_count = 0
is_dirty = False

PhysicalPage
pin_count = 0
is_dirty = False

Empty Frame Empty Frame

PhysicalPage
pin_count = 4
is_dirty = True

PhysicalPage
pin_count = 0
is_dirty = True

Empty Frame

Bufferpool: self.pages

key: string of path to file
value: PhysicalPage object

Holds a configurable number of
PhysicalPage objects

Implemented using a hash map

"file_path"
Hash function

key



Bufferpool: Evicting a Page
Situation:
Want a page but page is not in the bufferpool and buffer pool if full

self.lru_pages

PhysicalPage path

Is the pin_count 0? yes

no

Is the page dirty?

Write to
disk

yes

Remove from
self.pages

and
self.lru_pages

no



Has page? Return page

Read
from disk

Has empty frame?

Eviction
process

Update self.pages
and self.lru_pages

with new page

Bufferpool: Retrieving a Page
self.pages

yes

yesno

no



Data Reorg

Merging

Result of Merging



(page range
num, base
page num)

(page range
num, base
page num)

(page range
num, base
page num)

(page range
num, base
page num)

(page range
num, base
page num)

(page range
num, base
page num)

Tail Page

Copy of Base
Page's data

columns

Consolidated
base page

Merge: Summary
Merge queue

Full tail pages

Disk

old_col<#>_<tps>

col<#>

create copy

merge

write to disk

Base Page

get and pin
base page



Full Tail
Page

RID
column

Copy of
Base
Page

Merging
By default, merge happens after 1024 updates on a full base page

TPS < RID
AND

not all base
records are
merged yet

Update TPS
and exit

Has the
corresponding base
record already been

merged?

Copy tail record's
data columns to

base page

Get the next TID
(traverse backwards)

Get next full tail page if all
RIDs have been processed

(traverse backwards)

True

False

False

True



Consolidated
base page

Result of Merging
Disk before Disk after

col<#>

col<#> col<#>

old_col<#>_<tps>

col<#>

rename

metadata
columns

are
unchanged

write to
disk

merged columns

Files are renamed instead
of updating the page
directory

The same purpose of
rerouting all RIDs to the
consolidated base page is
achieved since if the old
base pages are being used,
they will still be in memory
and every new transaction
will use the consolidated
base pages.



Index

Index Structure

Creating Indices



438

14

[23, 108]

[81]

[1, 2, 99]

[59]

[3]

Hash function

Index
Key

7694

RIDs

Hash map allows for O(1) access time

Given a key, the index returns a list of
RIDs of base pages whose latest record
contains that key

The primary key column is indexed by
default. Secondary indices can be
created and will need to be maintained.

Limitation:
Optimized for equality
Needs multiple accesses for a range
query

After
hashing



col0

col1

col2

col3

col4

Creating Indices

Base Pages

Latest value for column 3

Hash map

Creating an index for column 3

indices

Add to
hash
map

Add to
indices

{Val: RID}



128 256 512

Insert Update Select Aggregate Delete

50 

40 

30 

20 

10 

0 

QUERY RUNTIMES (__MAIN__.PY)

Se
co

nd
s

Query

Mac: M1 pro 16 GB RAM

Specs

10k 10k 10k 10k10k
of 100 batch

The capacity of pages/frames in bufferpool



Questions


