
Alejandro Torres, Jenny Wang,
Ho-Chih Ma, Jamie Wu,

Karthik Palanisamy

LTeam Milestone 2

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

Team Member Roles
Leadership Roles:

● Team Coordinators: Jenny, Alejandro
● System Architects: Everyone
● Developers: Everyone
● Testers: Everyone

Implementation and Design Areas:
● Durability & Bufferpool Extension: Alejandro, Jamie
● Data Reorg (Contention-free Merge): Jenny
● Indexing: Ho-Chih, Karthik

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

(1) Durability and Bufferpool Extension
(2) Data Reorg
(3) Indexing / BTree Extension
(4) Performance
(5) Live Demo and Q&A

(1) Durability and Bufferpool
Extension

Bufferpool : LRU Cache

Least Recently Used

Most Recently Used

0

2

3

4

5

1

● Page range that contains associated
base/tail pages

Pinning & Dirty Status

Yes

Set pin=0,
clear dirty
status

Increment
pin

Is the page
in the
bufferpool?

Bufferpool

Get a
page

Has the
pagerange
been
modified?

Leave
dirty
status as
false

Set dirty
status to
True

Is the pin=0
and dirty
status is true?

No

Evict and
write to
disk

Is the
bufferpool
full?

Wait until
pin = 0

Yes

No

Yes

No

Yes

No

Start a
merge?

Increment
the pin

Merge

Is the
merge
done?

Decrement
the pin

Yes Yes Yes

Heapfile : Write to disk

Buffer is at capacity

Insert into bufferpool

Write to disk

Disk

Heapfile : Read from disk

Buffer is at capacity

Select page from bufferpool

Retrieve from disk

Disk

Evict LRU page

Put page in disk

(2) Data Reorg

Merge
Step 1: Create a separate thread for merging

Our choices:
● Merge at the Pagerange level
● Merge automatically after every 25 Tailpage updates
● Merge outside of our normal bufferpool

Execution
Thread

Merge
Threads

Merge
Step 2: Create a new empty Pagerange object

Pagerange object:
Basepage_Array = [Array of Basepage Objects…]
Tailpage_Array = [Array of Tailpage Objects…]
TPS = MAX_VALUE

…

…

Basepage_Array

Tailpage_Array

Original Pagerange

Basepage_Array

Tailpage_Array

New EMPTY Pagerange

Merge
Step 3: Update the new data columns

● Consolidate the data bottom up from the Tailpages by using the Indirection column

Page2…Page1Page0

Record0

Record1
…

Page2…Page1Page0

Record0

Record1
…

Basepage
Data

Tailpage
Data

Follow Indirection to get
most up to date records

Merge
Step 4: Have the new Pagerange object point to old metadata from the old Pagerange object

● Because everything is stored in bytearrays, we simply have the metadata columns of the
new Pagerange point to the metadata columns of the old Pagerange

○ Key reason: to avoid race conditions
Schema

Encoding
Start
Time …RID

Record0

Record1
…New Pagerange’s metadata

Old Pagerange’s metadata

Old Metadata

Merge
Step 5: “Replace” old Pagerange with newly updated Pagerange

…

…

Basepage_Array

Tailpage_Array

Original Pagerange

…

…

Basepage_Array

Tailpage_Array

Pagerange1

…

Table

…

…

Basepage_Array

Tailpage_Array

New Pagerange

“Replace”

(3) Indexing & BTree
 Extension

Multiple Indices/BTrees
- Each table now has 5 Indices / BTree

- Still multiple keys in a node

- Keys are still tuples

- Secondary columns might have duplicate values

- (value, RID) → (value, [RIDS])

Col 1
idx: 1

Col 2
idx: 2

Col 3
idx: 3

Primary
Key

idx : 0

Indices

0 1 2 3 4
Col 4
idx: 4

(4) Performance

Merge

Our final decisions:
● Pagerange Capacity = 2 Basepages
● Merge Capacity = Every 25 updates

Overall L-Store Performance
Our final decisions:

● Pagerange Capacity = 2 Basepages
● Merge Capacity = Every 25 updates

(5) Live Demo and Q&A
Thank you!

