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Team Member Roles
Leadership Roles:

● Team Coordinators: Jenny, Alejandro
● System Architects: Everyone
● Developers: Everyone
● Testers: Everyone

Implementation and Design Areas:
● Durability & Bufferpool Extension: Alejandro, Jamie
● Data Reorg (Contention-free Merge): Jenny
● Indexing: Ho-Chih, Karthik

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr


(1) Durability and Bufferpool Extension
(2) Data Reorg
(3) Indexing / BTree Extension
(4) Performance
(5) Live Demo and Q&A



(1) Durability and Bufferpool 
Extension



Bufferpool : LRU Cache
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Heapfile : Write to disk

Buffer is at capacity
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Heapfile : Read from disk
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(2) Data Reorg



Merge
Step 1: Create a separate thread for merging

Our choices:
● Merge at the Pagerange level
● Merge automatically after every 25 Tailpage updates
● Merge outside of our normal bufferpool

Execution
Thread

Merge
Threads



Merge
Step 2: Create a new empty Pagerange object

Pagerange object:
Basepage_Array = [Array of Basepage Objects…]
Tailpage_Array = [Array of Tailpage Objects…]
TPS = MAX_VALUE

…

…
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Merge
Step 3: Update the new data columns

● Consolidate the data bottom up from the Tailpages by using the Indirection column
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Follow Indirection to get 
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Merge
Step 4: Have the new Pagerange object point to old metadata from the old Pagerange object

● Because everything is stored in bytearrays, we simply have the metadata columns of the 
new Pagerange point to the metadata columns of the old Pagerange

○ Key reason: to avoid race conditions
Schema 
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Merge
Step 5: “Replace” old Pagerange with newly updated Pagerange
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(3) Indexing & BTree
      Extension



Multiple Indices/BTrees
- Each table now has 5 Indices / BTree

- Still multiple keys in a node

- Keys are still tuples

- Secondary columns might have duplicate values

- ( value, RID ) → ( value, [RIDS] )
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(4) Performance



Merge

Our final decisions: 
● Pagerange Capacity = 2 Basepages
● Merge Capacity = Every 25 updates



Overall L-Store Performance
Our final decisions: 

● Pagerange Capacity = 2 Basepages
● Merge Capacity = Every 25 updates



(5) Live Demo and Q&A
Thank you!


