LTeam Milestone 3

Alejandro Torres, Jenny Wang,
Ho-Chih Ma, Jamie Wu,
Karthik Palanisamy

Team Member Roles

Leadership Roles:
e Team Coordinators: Jenny, Alejandro
e System Architects: Everyone
e [Developers: Everyone
e Testers: Everyone

Implementation and Design Areas:
e Transaction Semantics: Jamie, Howard
e Multithreading Concurrency Control: Jamie, Howard
e Future Implementation: Karthik, Jenny, Alejandro
e Performance: Karthik, Jenny, Alejandro

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

[1] Transaction Semantics

[2] Multithreading Concurrency Control
[3] Future Implementation

[4] Performance

[S] Live Demo and Q&A

[1] Transaction Semantics

Transaction & Transaction Worker

Transaction Worker

e ——
Ieneac e,)
e A sequence queries
e Either read operations or write operations :
|
_ >,

Transaction worker:
e (Contains a list of transactions

e Keeps track of the status of transactions
® Insert
Query e Select ® Delete
e Update

Commit & Abort

Goal: Achieve atomicity by determining whether transactions are valid and committing groups of
queries or none with aborts to release any acquired locks to prevent deadlock

QOutcome 1: “Hard” Abort
Outcome 2: “Soft” Abort

Transaction
Rollback any

Worker _ _ _
acquired locks in Rollback any acquired
Iteratively check the translation locks, transaction is moved

Run a query arguments: | to end of transaction
transaction are the worker queue to be

arguments valid? attempted again later

Vs Are all necessary |
locks acquired? Outcome 3: Commit

Commit to the

transaction, execute
queries on database

[3] Multithreading / Concurrency
Control

® \ O—0
Concurrency Using Strict 2PL Policy

Motivation
e To avoid race conditions — no threads should have access
to resources at the same time

® Preventing anomalies with interleaved execution ﬂagen Poget Pudis \
o WR Conflicts
o RW Conflicts RecordO

o WW Conflicts

Recordl

Implementation
e | ocks are implemented in record level (Physical Page) \\ J
e If acolumnin arecord is access, all columns will be locked
e Using Python Threading, Lock(), Acquire(), and Release()

@1@

Shared and Exclusive Locks

Goal: To achieve isolation in the database while preserving read efficiency

Operation Type Writing

Reading

Writing

[4] Future Implementation

N
Post Milestone 3 Ideas

1] Use adifferent programming language, such as C
a] To achieve true parallelism
b] Better memory management
c] Overallincrease in performance time
2] Establish a special priority algorithm that executes threads in the most efficient order

- Delete .

[S] Performance

©

Overall Milestone Performance

Inserting 10k records took: 3.875
Updating 10k records took: 19.46875
Selecting 10k records took: 2.3325

Aggregate 10k of 100 record batch took: 0.234375
DELETING 10 RECORDS

Deleting 10k records took: 0.765625
total db time: 26.65625

@x@

Live Demo and Q&A
ILELLSZ LT

