
Alejandro Torres, Jenny Wang, 
Ho-Chih Ma, Jamie Wu, 

Karthik Palanisamy

LTeam Milestone 3



CREDITS: This presentation template was created by Slidesgo, and 
includes icons by Flaticon, and infographics & images by Freepik

Team Member Roles
Leadership Roles:

● Team Coordinators: Jenny, Alejandro
● System Architects: Everyone
● Developers: Everyone
● Testers: Everyone

Implementation and Design Areas:
● Transaction Semantics: Jamie, Howard
● Multithreading Concurrency Control: Jamie, Howard
● Future Implementation: Karthik, Jenny, Alejandro
● Performance: Karthik, Jenny, Alejandro

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr


(1) Transaction Semantics
(2) Multithreading Concurrency Control
(3) Future Implementation
(4) Performance
(5) Live Demo and Q&A



(1) Transaction Semantics



Transaction & Transaction Worker

Transaction:
● A sequence queries
● Either read operations or write operations 

Transaction worker:
● Contains a list of transactions
● Keeps track of the status of transactions

R(A)

Transaction Worker

W(A) R(B) W(X)

…
…Transaction

R(X)Query W(X)Select
Insert
Delete
Update



Commit & Abort
Goal: Achieve atomicity by determining whether transactions are valid and committing groups of 
queries or none with aborts to release any acquired locks to prevent deadlock

Yes

Rollback any 
acquired locks in 
the translation

Are all necessary 
locks acquired?

Iteratively check 
query arguments: 
are the 
arguments valid?

Transaction 
Worker

Run a 
transaction

Rollback any acquired 
locks, transaction is moved 
to end of transaction 
worker queue to be 
attempted again later

Commit to the 
transaction, execute 
queries on database

No

Yes

No

Outcome 1: “Hard” Abort
Outcome 2: “Soft” Abort

Outcome 3: Commit



(3) Multithreading / Concurrency 
Control



Concurrency Using Strict 2PL Policy

Motivation
● To avoid race conditions — no threads should have access 

to resources at the same time
● Preventing anomalies with interleaved execution

○ WR Conflicts
○ RW Conflicts
○ WW Conflicts

Implementation
● Locks are implemented in record level (Physical Page)
● If a column in a record is access, all columns will be locked
● Using Python Threading, Lock(), Acquire(), and Release()

Page2…Page1Page0

Record0

Record1
…

W



Shared and Exclusive Locks
Goal: To achieve isolation in the database while preserving read efficiency

Operation Type Reading Writing

Reading Yes No

Writing No No



(4) Future Implementation



Post Milestone 3 Ideas
1) Use a different programming language, such as C

a) To achieve true parallelism
b) Better memory management
c) Overall increase in performance time

2) Establish a special priority algorithm that executes threads in the most efficient order



 Delete



(5) Performance



Overall Milestone Performance



Live Demo and Q&A
Thank you!


