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Team Member Roles
Leadership Roles:

● Team Coordinators: Jenny, Alejandro
● System Architects: Everyone
● Developers: Everyone
● Testers: Everyone

Implementation and Design Areas:
● Transaction Semantics: Jamie, Howard
● Multithreading Concurrency Control: Jamie, Howard
● Future Implementation: Karthik, Jenny, Alejandro
● Performance: Karthik, Jenny, Alejandro
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(1) Transaction Semantics



Transaction & Transaction Worker

Transaction:
● A sequence queries
● Either read operations or write operations 

Transaction worker:
● Contains a list of transactions
● Keeps track of the status of transactions
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Commit & Abort
Goal: Achieve atomicity by determining whether transactions are valid and committing groups of 
queries or none with aborts to release any acquired locks to prevent deadlock
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(3) Multithreading / Concurrency 
Control



Concurrency Using Strict 2PL Policy

Motivation
● To avoid race conditions — no threads should have access 

to resources at the same time
● Preventing anomalies with interleaved execution

○ WR Conflicts
○ RW Conflicts
○ WW Conflicts

Implementation
● Locks are implemented in record level (Physical Page)
● If a column in a record is access, all columns will be locked
● Using Python Threading, Lock(), Acquire(), and Release()
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Shared and Exclusive Locks
Goal: To achieve isolation in the database while preserving read efficiency

Operation Type Reading Writing

Reading Yes No

Writing No No



(4) Future Implementation



Post Milestone 3 Ideas
1) Use a different programming language, such as C

a) To achieve true parallelism
b) Better memory management
c) Overall increase in performance time

2) Establish a special priority algorithm that executes threads in the most efficient order
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(5) Performance



Overall Milestone Performance



Live Demo and Q&A
Thank you!


