
CowabungaDB

Marcin WróblewskiKeyur Parikh

Nate ButtkeGeorge Berdovskiy Kevin Bao

Database

Table Table Table Table

Page Ranges

Base Pages

Tail Pages

Page Ranges

Base Pages

Tail Pages

Page Ranges

Base Pages

Tail Pages

Page Ranges

Base Pages

Tail Pages

Overall Design

● Vector of page ranges for storing data

● Also holds the indexer and page directory

○ Indexer is a B-Tree that maps keys to sets of RIDs

○ Page directory maps RIDs to addresses

● Holds reference to shared buffer pool manager

Overview

● Struct Table holding structures above

○ Additional fields for number of columns, table
name, and so on

● Exposed to Python via PyO3

● Buffer pool accessed via Arc<Mutex<BufferPool>>

○ Memory safety!

Implementation

Table
Table

Page Ranges

×∞

Page Directory (RID -> Address)

Indexer (Key -> RID)

Shared Buffer Pool Manager

● Dynamic - created as necessary

● Fixed number of base pages, unlimited number of tail
pages

● Serves as component of record address

Overview

● Struct PageRange with…

○ Array (fixed size) of LogicalPage<Base>

○ Vector of LogicalPage<Tail>

● Generic type arguments → readability and flexible
implementation

○ We take advantage of the Rust type system to
prevent logical bugs as well as memory bugs!

Implementation

Page Ranges

Base
Page

Tail
Page

×16

×∞

Page Range

Base
Page

Tail
Page

Logical Pages
Base Page

Physical Pages

Tail Page

Physical Pages

Every physical page represents one column!

C0 C1 Cn C0 C1 Cn

Physical Pages

● Physical pages are fixed at 4096 bytes
● "Cells" indexed from 0 to 511

○ Holds 512 values
● Values are either None or an i64
● Represented by struct Page

Physical Page (4096 bytes)

64 bits
(8 bytes)

0
1
2

510
511

Overview and Implementation

Buffer Pool
Interface

● Although our database is volatile, it's built on top of a
virtual buffer pool

● Future durability changes should minimally impact more
abstract areas of the codebase

● Implemented as BufferPool struct with several methods
for reading to / writing from physical pages and cells

● Buffer pool is shared by all tables!

● Rust doesn't allow multiple mutable references → wrap
with Arc<Mutex>>

○ Arc → "smart pointer enabling sharing data
between threads" 🔗

○ Mutex → locks / unlocks value 🔗
○ The result is memory safety

Virtual Buffer Pool
Overview and Implementation

https://itsallaboutthebit.com/arc-mutex/
https://itsallaboutthebit.com/arc-mutex/

● In addition to Cell and Page structs,
interfaces for reading and writing from pages
also provided

○ Namely write(), write_next(),
and read()

● Many writes to physical pages (e.g. during
insert() and update() queries) write to
the next available Cell in a page

● We maintain a cell_count that keeps track
of the next available index / number of
occupied cells

Physical Page (4096 bytes)

64 bits
(8 bytes)

0
1
2

510

read(2) OR write(2, 42)

cell_count
(511)

write_next(42)

"Buffer Pool" Methods

● What happens when a page is filled? Or a write is made
to a nonexistent page?

● Errors propagate upward into more abstract layers, which
prompts allocation

● Example - PageRange::insert_tail() may
receive an Err originating in write_next()

● insert_tail() must now allocate a new tail page via
LogicalPage::new(), which itself calls
BufferPool::allocate_pages()

PageRange::insert_tail()

LogicalPage<Tail>::insert()

BufferPool::write_next() BufferPool::allocate_pages()

OOB

OOB

LogicalPage::new()

"Buffer Pool" Space Handling

Queries

● Arguments…

○ An array of column values

● The primary key may be any column

● Insert adds this record to the next
available base page along with relevant
metadata columns

Base Page

Physical Pages

[pk, c1, c2, c3, c4, ...]Insert

● Takes the primary key and the columns that need
to be updated as arguments

● Creates tail record and points indirection column of
base page to the RID of the tail page

update(PK, [....V5,V6…])

PK → RID

RID → Physical Address of Base Page

Update

b2 v1 v2

RID Indirection Column Column

t2
t3

v3
v5

v4
v6

Base
Page

Tail
Page

● Arguments…
○ Search key, search key index, and the

columns the user wants (the
projection)

● Obtain the RIDs of the records that match the
search key from the appropriate index tree

● select_by_rid - for a given RID, peek at a
base (and possibly tail) record and return the
appropriate record only containing the
projected columns (indicated via 0 s̓ or 1 s̓ as
appropriate)

select(SK, SK index, projected columns)

SK → RID
(Using the B-Tree corresponding to

the search key index)

RID → base page address
(Check the indirection column

to see if there are any updates)

Return updated values in
the projected columns

Select

● Arguments

○ Primary key of the record to be deleted

● First make sure that a record with such key exists,
and if it does we remove its entries from the
indexer

● Add the base RID and any tail RIDs via the
indirection column to a "dead RIDs" vector kept
by the Table

● This a logical delete, which we will handle
properly in Milestone 2

delete(PK)

PK → RID
(Use an Indexer tree to test for
and find the base RID for PK)

Delete

RID → Physical
Address of Base Page

Add RIDs to
dead_rids

Find tail RIDs for this
record by iteratively
following Indirection

column values

Read column values of base
RID, search Indexer trees with
those values and delete the

base RID from each leaf

● Arguments
○ Start range, end range, and the

column in which we want a sum
● Obtain all RIDs in the range from the

appropriate indexer tree
● Call select_by_rid on each RID,

projecting on the column of interest and
adding the result to a running total

○ Return this total!
∑ select_by_rid(x, proj_on_col_index)[0]
x ∈ RID range

RID range :=
{RIDi | y ∈ [start, end] and RIDi ∈ Indexercol_index(y)}

Sum

Indexing

Indexer Class - B-Tree for every column, mapping each key to a
collection of RIDs…

● Built-in range capabilities
● Can trivially acquire all RIDs sharing a key value
● Possesses an "enabled" flag–external schema control

Changes reflected with every insertion, update and delete (exposed
methods), with tree restructuring or simply just atomic find-and-alter
actions.

Additional uses - test for presence of a record with some primary key

Indexing

Rust s̓ standard BTreeMap is cache efficient (the more a
node uses from one I/O, the better), and like B+ trees allows
efficient range-based queries. Amortized, it's fast in general!

Duplicate keys are a non-issue.

Age = 10 RIDDerek, RIDAlice

RIDEugene, RIDBobAge = 20

Indexing - Find & Alter

Age = 10 RIDDerek, RIDAlice, RIDCharlie

Insert([..., 10, …], RIDCharlie)

RIDEugene, RIDBobAge = 20

Indexing - Find & Alter

Age = 10 RIDDerek, RIDAlice, RIDCharlie

Update([..., 20, …], RIDAlice)

RIDEugene, RIDAlice, RIDBobAge = 20

Indexing - Find & Alter

Age = 10 RIDDerek, RIDCharlie

Update([..., 20, …], RIDAlice)

RIDEugene, RIDAlice, RIDBobAge = 20

This could be parallelizable. What about other operations?

Indexing - Find & Alter

Evaluation

Query Performance

Insert Update

Query Performance

Select Sum

Query Performance

Delete

Conclusion - Regardless of database size, queries
take the same amount of time!

Physical Page Size

Time vs. Page Size

Ran 1,000,000 insert queries using several
different page sizes. There was no significant

difference in the total runtime.

Base Pages per Range

Time vs. Base Pages per Range

Ran 1,000,000 insert queries using several
different base page counts. There was no
significant difference in the total runtime.

Demonstration

