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● Vector of page ranges for storing data

● Also holds the indexer and page directory

○ Indexer is a B-Tree that maps keys to sets of RIDs

○ Page directory maps RIDs to addresses

● Holds reference to shared buffer pool manager

Overview

● Struct Table holding structures above

○ Additional fields for number of columns, table 
name, and so on

● Exposed to Python via PyO3

● Buffer pool accessed via Arc<Mutex<BufferPool>>

○ Memory safety!

Implementation
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Indexer (Key -> RID)

Shared Buffer Pool Manager



● Dynamic - created as necessary

● Fixed number of base pages, unlimited number of tail 
pages

● Serves as component of record address

Overview

● Struct PageRange with…

○ Array (fixed size) of LogicalPage<Base>

○ Vector of LogicalPage<Tail>

● Generic type arguments → readability and flexible 
implementation

○ We take advantage of the Rust type system to 
prevent logical bugs as well as memory bugs!

Implementation
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Logical Pages
Base Page

Physical Pages

Tail Page

Physical Pages

Every physical page represents one column!

C0 C1 Cn C0 C1 Cn



Physical Pages

● Physical pages are fixed at 4096 bytes
● "Cells" indexed from 0 to 511

○ Holds 512 values
● Values are either None or an i64
● Represented by struct Page

Physical Page (4096 bytes)
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Overview and Implementation



Buffer Pool 
Interface



● Although our database is volatile, it's built on top of a 
virtual buffer pool

● Future durability changes should minimally impact more 
abstract areas of the codebase

● Implemented as BufferPool struct with several methods 
for reading to / writing from physical pages and cells

● Buffer pool is shared by all tables!

● Rust doesn't allow multiple mutable references → wrap 
with Arc<Mutex>>

○ Arc → "smart pointer enabling sharing data 
between threads" 🔗

○ Mutex → locks / unlocks value 🔗
○ The result is memory safety

Virtual Buffer Pool
Overview and Implementation

https://itsallaboutthebit.com/arc-mutex/
https://itsallaboutthebit.com/arc-mutex/


● In addition to Cell and Page structs, 
interfaces for reading and writing from pages 
also provided

○ Namely write(), write_next(), 
and read()

● Many writes to physical pages (e.g. during 
insert() and update() queries) write to 
the next available Cell in a page

● We maintain a cell_count that keeps track 
of the next available index / number of 
occupied cells
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read(2) OR write(2, 42)
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write_next(42)

"Buffer Pool" Methods



● What happens when a page is filled? Or a write is made 
to a nonexistent page?

● Errors propagate upward into more abstract layers, which 
prompts allocation

● Example - PageRange::insert_tail() may 
receive an Err originating in write_next()

● insert_tail() must now allocate a new tail page via 
LogicalPage::new(), which itself calls 
BufferPool::allocate_pages()

PageRange::insert_tail()

LogicalPage<Tail>::insert()

BufferPool::write_next() BufferPool::allocate_pages()

OOB

OOB

LogicalPage::new()

"Buffer Pool" Space Handling



Queries



● Arguments…

○ An array of column values

● The primary key may be any column

● Insert adds this record to the next 
available base page along with relevant 
metadata columns

Base Page

Physical Pages

[pk, c1, c2, c3, c4, ...]Insert



● Takes the primary key and the columns that need 
to be updated as arguments

● Creates tail record and points indirection column of 
base page to the RID of the tail page

update(PK, [....V5,V6…])

PK → RID

RID → Physical Address of Base Page       

Update
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● Arguments…
○ Search key, search key index, and the 

columns the user wants (the 
projection)

● Obtain the RIDs of the records that match the 
search key from the appropriate index tree

● select_by_rid - for a given RID, peek at a 
base (and possibly tail) record and return the 
appropriate record only containing the 
projected columns (indicated via 0 s̓ or 1 s̓ as 
appropriate)

select(SK, SK index, projected columns)

SK → RID 
(Using the B-Tree corresponding to

the search key index)

RID → base page address
(Check the indirection column

to see if there are any updates)

Return updated values in
the projected columns

Select



● Arguments

○ Primary key of the record to be deleted

● First make sure that a record with such key exists, 
and if it does we remove its entries from the 
indexer

● Add the base RID and any tail RIDs via the 
indirection column to a "dead RIDs" vector kept 
by the Table

● This a logical delete, which we will handle 
properly in Milestone 2

delete(PK)

PK → RID 
(Use an Indexer tree to test for 
and find the base RID for PK)

     

Delete

RID → Physical 
Address of Base Page

Add RIDs to 
dead_rids

Find tail RIDs for this 
record by iteratively 
following Indirection 

column values

Read column values of base 
RID, search Indexer trees with 
those values and delete the 

base RID from each leaf



● Arguments
○ Start range, end range, and the 

column in which we want a sum
● Obtain all RIDs in the range from the 

appropriate indexer tree
● Call select_by_rid on each RID, 

projecting on the column of interest and 
adding the result to a running total

○ Return this total!
∑  select_by_rid(x, proj_on_col_index)[0]
x ∈ RID range

RID range :=
{RIDi | y ∈ [start, end] and RIDi ∈ Indexercol_index(y)}

Sum



Indexing



Indexer Class - B-Tree for every column, mapping each key to a 
collection of RIDs…

● Built-in range capabilities
● Can trivially acquire all RIDs sharing a key value
● Possesses an "enabled" flag–external schema control

Changes reflected with every insertion, update  and delete (exposed 
methods), with tree restructuring or simply just atomic find-and-alter 
actions.

Additional uses - test for presence of a record with some primary key

Indexing



Rust s̓ standard BTreeMap is cache efficient (the more a 
node uses from one I/O, the better), and like B+ trees allows 
efficient range-based queries. Amortized, it's fast in general!

Duplicate keys are a non-issue.



Age = 10 RIDDerek, RIDAlice

RIDEugene,                RIDBobAge = 20

Indexing - Find & Alter



Age = 10 RIDDerek, RIDAlice,             RIDCharlie

Insert([..., 10, …], RIDCharlie)

RIDEugene,                RIDBobAge = 20

Indexing - Find & Alter



Age = 10 RIDDerek, RIDAlice,             RIDCharlie

Update([..., 20, …], RIDAlice)

RIDEugene, RIDAlice, RIDBobAge = 20

Indexing - Find & Alter



Age = 10 RIDDerek,                            RIDCharlie

Update([..., 20, …], RIDAlice)

RIDEugene, RIDAlice, RIDBobAge = 20

This could be parallelizable. What about other operations?

Indexing - Find & Alter



Evaluation



Query Performance

Insert Update



Query Performance

Select Sum



Query Performance

Delete

Conclusion - Regardless of database size, queries 
take the same amount of time!



Physical Page Size

Time vs. Page Size

Ran 1,000,000 insert queries using several 
different page sizes. There was no significant 

difference in the total runtime.



Base Pages per Range

Time vs. Base Pages per Range

Ran 1,000,000 insert queries using several 
different base page counts. There was no 
significant difference in the total runtime.



Demonstration




