
CowabungaDB

Marcin WróblewskiKeyur Parikh

Nate ButtkeGeorge Berdovskiy Kevin Bao

Milestone One Review

Database

Table Table Table Table

Page Ranges

Base Pages

Tail Pages

Page Ranges

Base Pages

Tail Pages

Page Ranges

Base Pages

Tail Pages

Page Ranges

Base Pages

Tail Pages

Overall Design

Persistence

File Structure
Database Directory

Table Directory

Buffer Pool Header

Table Header

Column One File

Column One Header

Database Directory
Stores every table in database,

determined by db.open(...).

Buffer Pool Header
Stores buffer pool management

data (e.g. page identifier map).

Table Directory
Stores table data. Uses numeric

identifier instead of name.

File Structure
Database Directory

Table Directory

Buffer Pool Header

Table Header

Column One File

Column One Header

Table Header
Stores page ranges and metadata like

table name, number of columns...

Column File / Header
File stores actual data, header

stores next available page slot.

Example File Structure
db = Database()
db.open("./COWDIR")
grades_table = db.create_table('Grades', 5, 0)
query = Query(grades_table)

COWDIR

bp.hdr

0

table.hdr

0.hdr

0.dat

1.hdr

1.dat

Column Files
● Written as bytes (no serialization, per specification)

● Array of 512 i64 values → buffer of 4096 u8 values

● Seek correct byte offset and write entire buffer

○ Know this from the physical page ID

○ Includes table identifier, column identifier, and
physical page identifier (zero indexed from
beginning of file)

1001010101010
0101010010101
0101001011001
0101001010101
0010010010100
0101001011101

1001010101010
0101010010101
0101001011001

Column

Page 0

Page 1

Buffer Pool

General Design Buffer Pool
● At core, list of frames protected by smart pointers

wrapping read-write locks (for memory / thread safety)

○ Arc<RwLock<Frame>>

● Each Frame has…

○ Page (in memory) or None

○ Boolean fields for dirty and empty states

○ Its PhysicalPageID

● The Arc is used to measure pin count

○ Guaranteed to be accurate

Frame (Dirty)
Frame

(Dirty)
Frame

Frame Frame Frame

Frame (Empty)
Frame

(Empty)
Frame

Eviction Process
Part One

BufferPool::request_page(id)

bring_page_into_pool(id)

Is the page in the pool?

Acquire a read lock, and
return the frame s̓ Page.

get_page_from_disk(id)

Then, acquire a read lock, and
return the frame s̓ Page.

NoYes

Is the frame empty?
NoYes

Need to replace a frame with the
desired page (next slide).

Eviction Process
Part Two

● When there are no empty Frames, one must be replaced with
the desired page

○ First, prioritize unpinned pages to avoid waiting

○ Second, randomly check Frame pin counts until we find
one without pins

○ This is effectively busy waiting

● The selected Frame is flushed if needed, then replaced.

● The busy waiting strategy represents a tradeoff

○ It makes it unnecessary to do accounting of unpinned
pages at every possible modification

Yes

 Flush and replace.

No

Is the randomly selected page
unpinned?

Merge

● Array of 512 i64 values → buffer of 4096 u8 values
● Seek correct byte offset and write entire buffer

○ Know this from the physical page ID

○ Includes table identifier, column identifier, and
physical page identifier

● Merge is called after 500 updates (by default)

○ Each PageRange to be merged is placed into a
channel (queue that serializes access)

■ Table sends, merge_thread receives
requests

Writes for Merge

Merge
Thread

Table
Page

Range

Page
Range

Page
Range

BP

Channel

Consolidate & Write

Table

Queue

Page
Range 3

Page
Range 1

Listen for a page range
(8) and merge it

Page
Range 2

Queue

Page
Range 8

Page
Range 3

Page
Range 1

Table

Channel

Page
Range 8

Page
Range 3

Page
Range 1

Merge: Initialization

Table

Queue

Page
Range 3

Page
Range 1

Listen for a page range
(3) and merge it

Page
Range 2

Queue

Page
Range 8

Page
Range 3

Page
Range 1

Table

Channel

Page
Range 3

Page
Range 1

Update in
Page Range 2

Merge: Initialization

Queue

Page
Range 3

Page
Range 1

Listen for a page range
(3) and merge it

Page
Range 2

Queue

Page
Range 8

Page
Range 3

Page
Range 1

Page Range 2
needs to be

merged

Channel

Page
Range 3

Page
Range 1 Table

num_updates ≥
THRESHOLD

Merge: Initialization

Channel

Page
Range 3

Page
Range 1

Insert Page Range 2
to be merged

Listen for a page range
(3) and merge it

Page
Range 2 Table

● Copies of base page
identifiers (for BP)

● Reference to TPS

Merge: Initialization

Copied Base
Page 1

Copied Base
Page k - 1

Request

Copied Base
Page k⋯ ⋯Copied Base

Page 2

⋯

Tail Page 7 RIDs

Consulting
the Page
directory

Cluster tail RIDs by their logical tail pages…

Tail pages
→ RIDs

Map

⋯

Tail Page 3 RIDs

Tail Page 8 RIDs

BP
 2

 In
di

re
ct

io
n

From buffer pool

Merge: Tail Records

Tail pages
→ RIDs

Map

TP 3 RIDs

TP 8 RIDs

TP 7 RIDs

⋯
⋯

Buffer pool
Manager

Tail Page 8Tail Page 7⋯ Tail Page 3

Avoid repeating
capacity
misses!

⋯

Merge: Tail Records

Merge: Consolidation

Copied Base
Page 1

⋯

Copied Base
Page 2

TP 7
Col 3

TP 7
Col 2

TP 7
Col 1

TP 8
Col 1

TP 8
Col 2

TP 8
Col 3

⋯

⋯

Old
Data

Old
Data

Old
Data

⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

In
di

re
ct

io
n

Metadata columns
not altered.

TID 27

TID 40

⋯
Col 1

⋯

TID 27

TID 40

⋯ ⋯

For each column, go through each TID

Finalizing:
● Copy new base pages into buffer pool
● Page directory → new (merged) base pages
● Set TPS to largest merged RID

Col 2 Col 3

Evaluation

Query Performance

Insert Update

Query Performance

Sum Select

Delete

Query Performance

Buffer Pool and Merge

Time vs. Buffer Pool Frames Time vs. Merge Threshold

Page Range Size and Page Size

Time vs. Number of Base Pages / Range Time vs. Page Size

Demonstration

