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Persistence
db = Database()
db.open("./COWDIR")
grades_table = db.create_table('Grades', 5, 0)
query = Query(db, grades_table)
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Transactions



Transaction Worker, Transactions

● Contains an array of Transactions
● When run is called, a new thread is spawned 

to run the transaction in Rust

Transaction Worker

● Contains an array of queries and their 
arguments

Transaction
Transaction Worker

run

Transaction 1

Transaction 2



Database Rewrite
● Python and Rust - incompatible handling of ownership 

and memory → FFI issues
● Resolved by rewriting Python Database class in Rust
● Every database has its own buffer pool and transaction 

manager (more on the next slide)

Database

self.db → Database



Transaction Manager
● Every transaction must lock the manager before 

beginning → transactions are started sequentially but 
run concurrently

● Notable fields…
○ transactions_in_process - map from 

transaction IDs to the primary keys they touch
○ pkeys_in_process - map from primary key to 

the effect a running transaction may have on it
■ Shared by all transactions!

● Transactions and associated primary keys are removed 
only when completed (strict 2PL)

Transaction Manager

Transactions in process

Primary keys in process

This is basically 
a virtual lock



Concurrency



Strict 2PL + No Wait

● Before transaction executes, request sent to 
transaction manager → attempts to gather locks on 
all participating records

● If all locks can be gathered and "compatibility 
checks" pass (conflict serializability), transaction 
executes

● Otherwise, the transaction is aborted
○ Retries if due to lock acquisition failure or 

integrity constraint violation due to other 
transactions

○ Permanently aborts if it's due to violated 
integrity constraint within this transaction

Overview and Implementation
Database::run_worker(worker)

Spawn thread, enqueue transactions. 
While queue isnʼt empty…

conform_transact_compat

Permanent IC 
Violation

Locks 
acquired

Lock
acquisition
failure

Run and 
continue.

Enqueue 
and retry.

Permanently 
abort.



Write Read

W(A) R(A)

W(B) R(B)

W(C) R(C)

T1: 
R(A)
W(A)

T2:
R(A)
W(A)

Locks: W(A), R(A) Locks: 

Transactions T1 and T2 are run



Write Read

W(A) R(A)

W(B) R(B)

W(C) R(C)

T1: 
R(A)
W(A)

T2:
R(A)
W(A)

Locks: W(A), R(A) Locks: R(A)

W(A) Lock cannot be obtained, abort 
T2 and retry later



Write Read

W(A) R(A)

W(B) R(B)

W(C) R(C)

T1: 
R(A)
W(A)

T2:
R(A)
W(A)

Locks: Locks: W(A), R(A)

T1 executes and locks are released



Write Read

W(A) R(A)

W(B) R(B)

W(C) R(C)

T1: 
R(A)
W(A)

T2:
R(A)
W(A)

Locks: Locks: 

T2 executes and locks are released



Correctness / Integrity constraints

1. We have a set of possibly-participating primary 
keys held by existing, committed records

2. Any insert, update and delete queries along with 
any participating primary keys are checked in order 
by a bookkeeping algorithm

● This allows us to discover integrity constraint 
violations before any queries are executed 
(ensuring atomicity too)

● Also discovers operations on non-existent 
records

Overview and Implementation

Q1  Q2  ⋯  ⋯  ⋯  ⚠  ⋯  ⋯  ⋯  ⋯  ⋯

Xact queries

PK s̓ → States of 
possession

PK Record

⋯ ⋯

⋯ ⋯



T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3) PK Record

1 1

2 2

In the algorithm, an update is treated as a delete followed by an insertion

From Indexer

Hash



T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

Check if PK of 1 has hash 
entry: PK Record

1 1

2 2

From Indexer

Hash



T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

Check if PK of 1 has hash 
entry: no, and ‘1ʼ also 
exists in the Indexer.

PK Record

1 1

2 2

From Indexer

Hash



T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held

Add new participating 
PK (1) to hash (delete) PK Record

1 1

2 2

From Indexer

Hash



T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held

Add new participating 
PK (1) to hash (delete)
Check if PK of 3 has 
hash entry:

PK Record

1 1

2 2

From Indexer

Hash



T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held
3 → Held

Add new participating 
PK (1) to hash (delete)
Check if PK of 3 has 
hash entry: no, and ‘3ʼ 
also does not exist in 
the Indexer (insert)

PK Record

1 1

2 2

From Indexer

Hash



T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held
3 → Held
2 → Not held

PK Record

1 1

2 2

From Indexer

Hash

Add new participating 
PK (2) to hash (delete)



T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held
3 → Held
2 → Not held

PK Record

1 1

2 2

From Indexer

Hash

Add new participating 
PK (2) to hash (delete)
Check if PK of 3 has 
hash entry:



T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held
3 → Held ⚠
2 → Not held

PK Record

1 1

2 2

From Indexer

Hash

Add new participating 
PK (2) to hash (delete)
Check if PK of 3 has 
hash entry: yes, and a 
PK of 3 is held (insert)

For insertions we may also find a conflict in the Indexer
● Donʼt abort permanently, this was triggered only 

by incompatibility with current records (no 
self-incompatibility so far is known)

For deletions, we might either notice
● ‘Nonexistentʼ in the hash (self-incompatible 

double deletion)
● The PK is missing from the Indexer (deletion of 

never-existing record, not self-incompatible)

No matter the starting records, T1 
is self-incompatible and so is 

permanently aborted.



Evaluation



Comparing against Milestone 2
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Number of inserts (queries)
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Inserts ~ 15-20x boost
Comparing against Milestone 2



Number of updates (queries)
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Updates ~ 4-6x boost
Comparing against Milestone 2



Number of updates (queries)
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Deletes ~ 5-8x boost
Comparing against Milestone 2



Conclusion



Looking Back…
● Using Rust was an excellent choice

○ Very fast and memory safe… not a single 
segmentation fault!

○ Only bugs were logic bugs
○ Types → easier to understand

● Teamwork is important!
○ Met in person 2 - 3 times per week
○ Food fuels productivity 🍕

● Understanding is critical for implementation
○ Some features worked almost on the first 

try due to hours of thorough discussion
● Around 115+ commits, 20 closed PRs 🎉



Demonstration




