@ CowabungaDB

George Berdovskiy Nate Buttke Kevin Bao

Keyur Parikh Marcin Wréblewski

Previous Milestone Review

Overall Design

Table Table Table Table

Page Ranges Page Ranges Page Ranges Page Ranges

[Base Pages J [Base Pages J [Base Pages J [Base Pages J

Tail Pages Tail Pages Tail Pages Tail Pages

Persistence

db Database COWDIR

db.open("./COWDIR"
grades_table db.create_table('Grades', 5, ©
query Query(db, grades_table bp hdl"

\) ’
table.hdr

0.hdr
(] @.dat
1.hdr

(] 1.dat

Buffer Pool

Buffer Pool

o o
Frame (Dirty) (Dirty)
Frame Frame
g J g J
(N\ 4 N\
Frame Frame Frame
g J g J
(A ST T TR \I ST TTTTTY \I
Frame (Empty) : ; (Empty)
: Frame Lo Frame :
I\ /I I\ 1

Transactions

Transaction Worker, Transactions

Transaction Worker
e Contains an array of Transactions

e When runis called, a new thread is spawned
to run the transaction in Rust

Transaction

e Contains an array of queries and their
arguments

Database Rewrite

e Python and Rust - incompatible handling of ownership
and memory - FFlissues

e Resolved by rewriting Python Database class in Rust

e Every database has its own buffer pool and transaction
manager (more on the next slide)

!" Database

self.db > &» Database

L‘

Transaction Manager Transaction Manager

e Every transaction must lock the manager before 4)
beginning - transactions are started sequentially but
run concurrently <Transactions in process>

e Notable fields...
. . CPrimary keysin process)
o transactions_in_process - map from
transaction IDs to the primary keys they touch /])
o pkeys_in_process - map from primary key to
the effect a running transaction may have on it

m Shared by all transactions!

e Transactions and associated primary keys are removed
only when completed (strict 2PL)

Concurrency

Strict 2PL + No Wait

Overview and Implementation

Before transaction executes, request sent to
transaction manager - attempts to gather locks on
all participating records

If all locks can be gathered and "compatibility
checks" pass (conflict serializability), transaction
executes

Otherwise, the transaction is aborted

o Retries if due to lock acquisition failure or
integrity constraint violation due to other
transactions

o Permanently aborts if it's due to violated
integrity constraint within this transaction

(Database: :run_worker(worker))

J

J

(conform_transact_compat)

Run and
continue.

Enqueue
and retry.

Permanent IC
Violation

Permanently
abort.

Transactions T1and T2 are run

Write Read
R(A)

T1:
R)&B}/ R(B)
W(C) R(C)

W(A) /

Locks: W(A), R(A)

Locks:

T2:
R(A)
W(A)

Write Read

T1: T2:
R)&B}/ R(E) R

W(A) W(A)

Locks: W(A), R(A) Locks: R(A)

WI(A) Lock cannot be obtained, abort
T2 and retry later

T1:
R(A)
W(A)

Locks:

T1executes and locks are released

Read

Locks: W(A), R(A)

Write Read
W(A) R(A)
T1: T2:
R(A) W(B) R(B) R(A)
W(A) W(A)
W(C) R(C)
Locks: Locks:

T2 executes and locks are released

Correctness / Integrity constraints

Overview and Implementation

1. We have a set of possibly-participating primary PK Record

keys held by existing, committed records D{>{>

2. Any insert, update and delete queries along with
any participating primary keys are checked in order S S .

by a bookkeeping algorithm Xact queries
e This allows us to discover integrity constraint m
violations before any queries are executed ‘ Q1 Q 5 == LA

(ensuring atomicity too)

e Also discovers operations on non-existent
records

PK's - States of
possession

o From Indexer
Update(Record 1's PK to 3) PK

R
Update(Record 2's PK to 3) ecord
1 1
~ J
2 2

Hash

T1: From Indexer
Update(Record 1's PK to 3) Checkif PK of Thashash | b .
Update(Record 2's PK to 3) entry: ecord
1 1
~ /
2 2

Hash

o From Indexer
Update(Record 1's PK to 3) Check if PK of 1has hash PK Record
Update(Record 2's PK to 3) entry: no, and 1" also

exists in the Indexer. 1 1
g J
2 2

Hash

o From Indexer
Update(Record 1's PK to 3) Add new participating PK Record
Update(Record 2's PK to 3) PK (1) to hash (delete)
1 1
g J
2 2
Hash

1- Not held

o From Indexer
Update(Record 1's PK to 3) Add new participating PK Record
Update(Record 2's PK to 3) PK (1) to hash (delete)

Check if PK of 3 has 1 1

N J hash entry:

2 2
Hash

1- Not held

T1:
Update(Record 1's PK to 3)
Update(Record 2's PK to 3)

Add new participating
PK (1) to hash (delete)
Check if PK of 3 has
hash entry: no, and '3’
also does not exist in
the Indexer (insert)

From Indexer

PK Record
1 1

2 2

Hash

1- Not held
3 - Held

— From Indexer
Update(Record 1's PK to 3) PK Record
Update(Record 2's PK to 3) Add new participating
PK (2) to hash (delete) 1 1
- /
2 2
Hash
1- Not held
3 - Held

2 > Not held

T1:
Update(Record 1's PK to 3)
Update(Record 2's PK to 3)

Add new participating
PK (2) to hash (delete)
Check if PK of 3 has
hash entry:

From Indexer
PK Record
1 1

2 2

Hash

1 - Not held
3 > Held
2 > Not held

T) From Indexer
Update(Record 1's PK to 3)
Update(Record 2's PK to 3) Add new participating PK Record
PK (2) to hash (delete) 1 1
- J Check if PK of 3 has
hash entry: yes, and a 2 2
PK of 3is held (insert)
For insertions we may also find a conflict in the Indexer Hash
e Don't abort permanently, this was triggered only
by incompatibility with current records (no 1- Not held
self-incompatibility so far is known) 3 > Held A
2 - Not held

For deletions, we might either notice
e 'Nonexistent’ in the hash (self-incompatible
double deletion) No matter the starting records, T1
e The PKis missing from the Indexer (deletion of is self-incompatible and so is
never-existing record, not self-incompatible) permanently aborted.

Evaluation

Time (seconds)

Comparing against Milestone 2

Selects
® M3 @ m2
1
01
0.01
0.001
100 1000 10000 100000

Number of updates (queries)

Time (seconds)

10

0.1

0.01

100

Comparing against Milestone 2
Inserts ~ 15-20x boost

® M3 @ M

1000 10000 100000

Number of inserts (queries)

1000000

Time (seconds)

0.1
0.05

100

Comparing against Milestone 2
Updates ~ 4-6x boost

® M3 @ M

500 1000 5000 10000

Number of updates (queries)

50000

Time (seconds)

Comparing against Milestone 2
Deletes ~ 5-8x boost

® M3 @ M2

10

0.1

0.01

—_

10 100 1000

Number of updates (queries)

Conclusion

Looking Back...

e Using Rust was an excellent choice

o Very fast and memory safe... not a single
segmentation fault!

o Only bugs were logic bugs
o Types -> easier to understand
e Teamwork is important!
o Metin person 2 - 3 times per week
o Food fuels productivity <
e Understanding is critical for implementation

o Some features worked almost on the first
try due to hours of thorough discussion

e Around 115+ commits, 20 closed PRs &

Demonstration

