
CowabungaDB

Marcin WróblewskiKeyur Parikh

Nate ButtkeGeorge Berdovskiy Kevin Bao

Previous Milestone Review

Database

Table Table Table Table

Page Ranges

Base Pages

Tail Pages

Page Ranges

Base Pages

Tail Pages

Page Ranges

Base Pages

Tail Pages

Page Ranges

Base Pages

Tail Pages

Overall Design

Persistence
db = Database()
db.open("./COWDIR")
grades_table = db.create_table('Grades', 5, 0)
query = Query(db, grades_table)

COWDIR

bp.hdr

0

table.hdr

0.hdr

0.dat

1.hdr

1.dat

Buffer Pool
Buffer Pool

Frame (Dirty)
Frame

(Dirty)
Frame

Frame Frame Frame

Frame (Empty)
Frame

(Empty)
Frame

Transactions

Transaction Worker, Transactions

● Contains an array of Transactions
● When run is called, a new thread is spawned

to run the transaction in Rust

Transaction Worker

● Contains an array of queries and their
arguments

Transaction
Transaction Worker

run

Transaction 1

Transaction 2

Database Rewrite
● Python and Rust - incompatible handling of ownership

and memory → FFI issues
● Resolved by rewriting Python Database class in Rust
● Every database has its own buffer pool and transaction

manager (more on the next slide)

Database

self.db → Database

Transaction Manager
● Every transaction must lock the manager before

beginning → transactions are started sequentially but
run concurrently

● Notable fields…
○ transactions_in_process - map from

transaction IDs to the primary keys they touch
○ pkeys_in_process - map from primary key to

the effect a running transaction may have on it
■ Shared by all transactions!

● Transactions and associated primary keys are removed
only when completed (strict 2PL)

Transaction Manager

Transactions in process

Primary keys in process

This is basically
a virtual lock

Concurrency

Strict 2PL + No Wait

● Before transaction executes, request sent to
transaction manager → attempts to gather locks on
all participating records

● If all locks can be gathered and "compatibility
checks" pass (conflict serializability), transaction
executes

● Otherwise, the transaction is aborted
○ Retries if due to lock acquisition failure or

integrity constraint violation due to other
transactions

○ Permanently aborts if it's due to violated
integrity constraint within this transaction

Overview and Implementation
Database::run_worker(worker)

Spawn thread, enqueue transactions.
While queue isnʼt empty…

conform_transact_compat

Permanent IC
Violation

Locks
acquired

Lock
acquisition
failure

Run and
continue.

Enqueue
and retry.

Permanently
abort.

Write Read

W(A) R(A)

W(B) R(B)

W(C) R(C)

T1:
R(A)
W(A)

T2:
R(A)
W(A)

Locks: W(A), R(A) Locks:

Transactions T1 and T2 are run

Write Read

W(A) R(A)

W(B) R(B)

W(C) R(C)

T1:
R(A)
W(A)

T2:
R(A)
W(A)

Locks: W(A), R(A) Locks: R(A)

W(A) Lock cannot be obtained, abort
T2 and retry later

Write Read

W(A) R(A)

W(B) R(B)

W(C) R(C)

T1:
R(A)
W(A)

T2:
R(A)
W(A)

Locks: Locks: W(A), R(A)

T1 executes and locks are released

Write Read

W(A) R(A)

W(B) R(B)

W(C) R(C)

T1:
R(A)
W(A)

T2:
R(A)
W(A)

Locks: Locks:

T2 executes and locks are released

Correctness / Integrity constraints

1. We have a set of possibly-participating primary
keys held by existing, committed records

2. Any insert, update and delete queries along with
any participating primary keys are checked in order
by a bookkeeping algorithm

● This allows us to discover integrity constraint
violations before any queries are executed
(ensuring atomicity too)

● Also discovers operations on non-existent
records

Overview and Implementation

Q1 Q2 ⋯ ⋯ ⋯ ⚠ ⋯ ⋯ ⋯ ⋯ ⋯

Xact queries

PK s̓ → States of
possession

PK Record

⋯ ⋯

⋯ ⋯

T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3) PK Record

1 1

2 2

In the algorithm, an update is treated as a delete followed by an insertion

From Indexer

Hash

T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

Check if PK of 1 has hash
entry: PK Record

1 1

2 2

From Indexer

Hash

T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

Check if PK of 1 has hash
entry: no, and ‘1ʼ also
exists in the Indexer.

PK Record

1 1

2 2

From Indexer

Hash

T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held

Add new participating
PK (1) to hash (delete) PK Record

1 1

2 2

From Indexer

Hash

T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held

Add new participating
PK (1) to hash (delete)
Check if PK of 3 has
hash entry:

PK Record

1 1

2 2

From Indexer

Hash

T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held
3 → Held

Add new participating
PK (1) to hash (delete)
Check if PK of 3 has
hash entry: no, and ‘3ʼ
also does not exist in
the Indexer (insert)

PK Record

1 1

2 2

From Indexer

Hash

T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held
3 → Held
2 → Not held

PK Record

1 1

2 2

From Indexer

Hash

Add new participating
PK (2) to hash (delete)

T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held
3 → Held
2 → Not held

PK Record

1 1

2 2

From Indexer

Hash

Add new participating
PK (2) to hash (delete)
Check if PK of 3 has
hash entry:

T1:
Update(Record 1 s̓ PK to 3)
Update(Record 2 s̓ PK to 3)

1 → Not held
3 → Held ⚠
2 → Not held

PK Record

1 1

2 2

From Indexer

Hash

Add new participating
PK (2) to hash (delete)
Check if PK of 3 has
hash entry: yes, and a
PK of 3 is held (insert)

For insertions we may also find a conflict in the Indexer
● Donʼt abort permanently, this was triggered only

by incompatibility with current records (no
self-incompatibility so far is known)

For deletions, we might either notice
● ‘Nonexistentʼ in the hash (self-incompatible

double deletion)
● The PK is missing from the Indexer (deletion of

never-existing record, not self-incompatible)

No matter the starting records, T1
is self-incompatible and so is

permanently aborted.

Evaluation

Comparing against Milestone 2

Number of updates (queries)

Ti
m

e
(s

ec
on

ds
)

Selects

Number of inserts (queries)

Ti
m

e
(s

ec
on

ds
)

Inserts ~ 15-20x boost
Comparing against Milestone 2

Number of updates (queries)

Ti
m

e
(s

ec
on

ds
)

Updates ~ 4-6x boost
Comparing against Milestone 2

Number of updates (queries)

Ti
m

e
(s

ec
on

ds
)

Deletes ~ 5-8x boost
Comparing against Milestone 2

Conclusion

Looking Back…
● Using Rust was an excellent choice

○ Very fast and memory safe… not a single
segmentation fault!

○ Only bugs were logic bugs
○ Types → easier to understand

● Teamwork is important!
○ Met in person 2 - 3 times per week
○ Food fuels productivity 🍕

● Understanding is critical for implementation
○ Some features worked almost on the first

try due to hours of thorough discussion
● Around 115+ commits, 20 closed PRs 🎉

Demonstration

