
ECS 165A Milestone 3
Aadvika Ahuja, Manvi Nawani, Veda Periwal, Neerja Natu, Rahul Lakshmanan, Vibha Raju



Outline
Transactions1.

Concurrency Control2.



1. Transactions



Read(A)

Transaction and Transaction Worker

Transaction:

Transaction worker:

- A collection of multiple
queries/operations to be executed

...

Transaction worker

Transaction 1
Transaction 2

Transaction n

Transaction 1

- List of transactions

Transaction 2 Transaction n- Contains status of each transaction
- True for committed transaction
- False for aborted transaction

Read(A)

Write(A)

Read(B)

Read(C)

Read(B)

Read(C)

Read(A)

Write(A)



Transaction

All operations
succeed

Atomicity
ALL operations of a transaction are either completed entirely or no operations at all 

Any one
operation fails

Commit Abort

Write to disk Undo all actions and
database should appear

unchanged 



=

Isolation

Database

Transaction A

Transaction D Transaction E

Transaction F

Transaction C

Transaction B

Concurrent Execution of
Transactions

Database

Database

Database

...

Transaction A

Transaction B

Transaction F

Serial Execution 

=



Transaction Commit() Bufferpool (Volatile Memory)

Committed
Transaction

Committed
Transaction

Durability

Disk (Non-Volatile Memory)

Disk

CrashCrash
Committed Transaction

Recorded to Disk

Committed transaction stays in non-
volatile memory even after crash



2. Concurrency Control 



Shared Exclusive

Shared Grant Don’t Grant

Exclusive Don’t Grant Don’t Grant

Shared and Exclusive Locks

Initially Holds

Requests For

Shared Lock (reader lock):
- Select
- Sum

Exclusive Lock (writer lock):
- Insert

- Update
- Delete



Is there a shared lock on
that record?

Exclusive Locks and Upgrades

Is there an exclusive
lock?

NO YES

Who is the owner of
the shared lock?

NO YES

Exclusive Lock
Granted

Abort
Transaction

Current
Transaction

Upgrade to
Exclusive Lock

Abort
Transaction

Different
Transaction



Lock Management

Motivation: 
No 2 transactions should access the same

resource that creates WR, WW, or RW conflict

Locks are present on record level only

Implementation:

We use Python Threading, Lock(), Acquire(), and Release()

For each transaction,
- Dictionary of keys mapped to RWLock objects
- Set of keys that have write (exclusive) lock
- Set of keys that have read (shared) lock



Concurrency Using Strict 2PL Policy

All acquired locks are released together
once the transaction is complete

No wait policy aborts transaction if we fail
to acquire lock



Transaction
worker begins a

transaction

Iterate through list
of queries in
transaction

Attempt to
acquire

necessary lock.
Can lock be
acquired?

Commits and Aborts

Abort. Rollback
any locks acquired

in transaction

Are there more
queries in

transaction?

Continue to
next query

NO

YES

Commit.
Execute queries.

YES NO



Commits
Step 1: Acquire ALL the required locks

Step 2: Execute all queries

Step 3: When the transaction is ready to commit:
Write all changes to disk

After the changes are written to disk,
release ALL of its locks

Aborts
Step 1: Attempt to acquire ALL the required

locks

Step 4: Committed transactions return true

Step 2: When failure to acquire a lock,
release all previously acquired locks by

this transaction

Step 3: Aborted transactions return false

Step 4: Reattempt the transaction

Aborts commonly occur when:
- failure to acquire locks (most common)

- DB crashes
- Power Failures



Conclusion

L-story of my life W2024

Takeaways from the entire project: How to effectively communicate within a
group, collaborative efforts during the coding process, technical skills

related to columnar database, debugging techniques, performance testing

A very special thank you to Professor Sadoghi and the TAs for this learning
opportunity, constant support and constructive feedback.

Additional Testing and Improvements to M3 are still being explored
implemented :)

Improvements for the future: Using QueCC instead of 2PL for better
concurrency, using a different programming language to achieve true

parallelism 


