
Instructor: Mohammad Sadoghi Due Date: February 25, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

Milestone 2: Single-threaded, In-memory & Durable L-Store
ECS 165A - Winter 2025

In this milestone, we will take the first step to support transactional capability, namely,
to ensure any committed changes to the database will be remembered forever, i.e., the
Durability property in the transactional ACID semantics. We will further improve the
analytical capabilities of L-Store by implementing the background merge process and
supporting indexing.

The main objective of this milestone consists of three parts. (1) Durability & Bufferpool
Extension: to ensure all data is stored on disk and can be recovered from it and to
assume that data cannot fit entirely in memory, thus, a page replacement policy is
needed. (2) Data Reorg: to ensure base pages are “almost” up-to-date by periodically
merging base pages with their corresponding tail pages data. (3) Indexing: to ensure
fast lookup by creating indexes on any column.

The overall goal of this milestone is to create a single-threaded, in-memory, and durable
L-Store [Paper, Slides] capable of performing simple SQL-like operations. In order to
receive an outstanding grade (A+) besides basic requirements, you are encouraged to
compare different bufferpool strategies, experimental analysis with graphs (see the
L-Store paper), and/or extended query capabilities. Bonus: Kindly note that the fastest
L-Store implementations (the top three groups) will be rewarded. You may also earn
bonus points for creative design by improving upon L-Store, such as novel ways to
manage the bufferpool, improved merge process, and/or the compression of base
pages. Overall each group may receive up to a 10% bonus.

Think Long-term, Plan Carefully.
Be curious, Be creative!

Durability & Bufferpool Extension
In a real setting, one may expect that data could be too large to be kept in memory
entirely at all times (and perhaps too expensive), so most databases keep data on disk
(which is non-volatile) and only keep the most commonly accessed pages in memory
(which is volatile). L-Store is no exception, and its design is compatible with persisting
data on disk and coping with a limited-size bufferpool.

1

https://www.researchgate.net/publication/324150481_L-Store_A_Real-time_OLTP_and_OLAP_System
https://expolab.org/papers/l-store-slides.pdf

Instructor: Mohammad Sadoghi Due Date: February 25, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

The basic design of the bufferpool assumes that we have a pool of memory pages for
reading and writing data from and to persistent storage, namely, disk. You may assume
that we have a fixed constant number of pages in your bufferpool, which is defined
when we create and initialize the database (i.e., invoking the open() database
function). When a user requests a record that falls on a page not currently in the
bufferpool, you need to bring the requested page first into the bufferpool. If the
bufferpool is full, then you need to evict a page from your pool to allow reading the new
page. If the page being evicted is dirty, then it must be written back to disk before
discarding it. You may use any replacement policies of your choice, for example,
Least-recently-used (LRU) or most-recently-used (MRU).

Note the bufferpool holds both base and tail pages. You may choose the granularity of
your eviction policy. For example, you may choose to evict a single page (the standard
practice) or evict all columns of the base/tail pages together, or you may evict at the
granularity of the page range. Of course, a coarser granularity may result in more
frequent eviction but simpler management. But no need to persist your indexes. You
may assume all indexes will be created after the restart, namely, closing and opening
your database. Also, indexes will not be allocated in your bufferpool space.

Dirty Pages: When a page is updated in the bufferpool, it will deviate from the copy on
disk. Thus, the page is marked as dirty by the writer transaction. Your bufferpool needs
to keep track of all the dirty pages in order to flush them back to disk upon replacement
or when the database is closed (i.e., invoking the close() database function).

(Un)Pining Pages: Anytime a page in the bufferpool is accessed, the page will be pinned
first, and once the transaction no longer needs the page, it will unpin it. The pin/unpin
simply allows the bufferpool to track how many outstanding transactions are still
accessing the page. A page can only be replaced if it has a pin value of zero, implying it
is not currently needed by any active transactions.

You have complete freedom on how to make your data durable on disk, how to manage
your pages, and how to handle files. All of these choices may affect your performance!
As indicated earlier, the database has open() and close() functions to ensure all
data are read from and written back to disk, respectively.

2

Instructor: Mohammad Sadoghi Due Date: February 25, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

Data Reorg: Contention-free Merge
Over time, as data is updated gradually, base pages become obsolete, and most reads
will be directed toward the tail pages; thus, the lookup times increase. To alleviate the
performance degradation, the tail pages (or tail records) are periodically merged with
their corresponding base pages (or base records) in order to bring base pages “almost”
up-to-date. Note, even during the merge process itself, the records can be updated, thus,
by design, the merge process is done lazily and not kept 100% up-to-date. The merge
process is designed to be contention-free, meaning that it will not interfere with reads or
writes to the records being merged and does not hinder the normal operation of the
database.

The choice of the granularity of merge is completely open; it could be done at the
base-page level, for one or all columns, or at the page-range level. The frequency of
merge is yet another design parameter that you can control. For example, you may
choose to merge after a fixed number of updates or after a fixed time interval.

There are many ways to perform the merge, again, you have complete freedom. A
simple way is to load a copy of all base pages of the selected range into memory (this
could be a space outside your normal bufferpool for simplicity). Next, the records in the
tail pages are iterated in reverse order and applied to the copied based pages to yield a
set of fully updated records, i.e., creating the consolidated base pages. If there are
multiple updates to the same record, only the latest update is applied, which is why we
may consider the reverse iteration of tail records, so we can skip the earlier outdated
updates. When scanning the tail pages, for each tail record, we need to determine its
corresponding base record. To solve this, we could add an extra column to the
database, the BaseRID column, that tracks the RID of the original base record for each
tail record. Once the merged base pages are created, the page directory is updated to
point to the new pages. Locking may be required to protect updates to the page
directory.

While the merge is in progress, two copies of the base pages will be kept in memory, the
original unmerged and the new copy that is being merged. Any transaction that started
before the completion of the merge will access the old unmerged base pages in the
bufferpool. Once the merge is completed, the page directory will be updated to point to
the new merged pages, and the new transactions will use the merged pages in the
bufferpool. Locking may be required to protect updates to the page directory, which may
interfere (and slow down) with any transactions trying to read the page directory.

3

Instructor: Mohammad Sadoghi Due Date: February 25, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

However, the page directly is rarely updated; thus, one may expect the locking
contention to be negligible. Of course, any such claims need experimental evidence.

To allow for a contention-free merge process, the lineage of each base page is
maintained internally using the notion of Tail-Page Sequence Number (TPS). The TPS
is lineage information that is kept on every base page. TPS tracks the RID of the last tail
record (TID) that has been applied (merged) to a base page. The TID space could be

drawn from the range to , decreasing monotonically.264 − 1 0

The TPS is initially set to (or 0 if TIDs are increasing monotonically) for all base264

pages. Assume 20 tails records are consolidated after a merge cycle, where the last TID
is 1243. Given that TIDs are monotonically decreasing, so all the other merged tail
records have TIDs larger than 1243. Once the merge is completed, the TPS of the
merged page is set to 1243. Now, assume that an update was made to a record on this
base page during the merge. The resulting tail record has a RID less than 1243, say
1240, and did not participate in the merge. So when a base record is accessed, we can
compare the record’s indirection to the page TPS to determine if it points to a tail record
that has been merged or not. This eliminates the need to follow tail records if they have
already merged onto the page.

To avoid changing the RIDs of the base records or altering the indirection column during
the merge, deleted records are not removed from the database during the merge. As a
result, there will be gaps between records in the merged base pages (if not
compressed). This may lead to the underutilization of pages if too many records are
deleted. There are ways to address this issue, a bonus topic.

To ensure the merge process does not interfere with or halt the execution of
transactions, the merge should be done in a background thread to allow for the
single-threaded execution of transactions to continue. Note that this is different from a
multi-threaded database implementation where multiple transactions are being
executed concurrently. All the queries will still be processed on the main thread, and we
are only offloading the merge to a background thread. The modification of the page
directory still needs to happen on the main thread (foreground), so it naturally blocks the
database.

An extended discussion of the merge process is covered in the L-Store Paper.

4

https://www.researchgate.net/publication/324150481_L-Store_A_Real-time_OLTP_and_OLAP_System

Instructor: Mohammad Sadoghi Due Date: February 25, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

Indexing
During the first milestone, most of you implemented indexing on the primary key column
of the database. Since the primary key is the most common way for users to access
records, it is only natural to build an index on this column by default; however, users may
need to frequently access records based on the values of other columns besides the
primary key, so it is necessary to build indexes on other columns as well.

Although indexing increases the performance of SELECT queries, it carries a
performance penalty when inserting, updating, and deleting records, as the indexes
must be kept up-to-date. The index structure will also consume extra memory, yet
another overhead. Note when we create an index on a column, one needs to iterate over
all the records that have been inserted so far and add them to the index. This is also an
expensive operation as it requires reading the entire table and going through all the tail
records to find the latest values for every record.

Implementation
We have provided a code skeleton that can be used as a baseline for developing your
project. This skeleton is merely a suggestion, and you are free and even encouraged to
come up with your own design.

You will find three main classes in the provided skeleton. Some of the needed methods
in each class are provided as stubs. But you must implement the APIs listed in db.py,
query.py, table.py, and index.py; you also need to ensure that you can run
main.py and tester.py to allow auto-grading as well. We have provided several such
methods to guide you through the implementation.

The Database class is a general interface to the database and handles high-level
operations such as starting and shutting down the database instance and loading the
database from stored disk files.1 This class also handles the creation and deletion of
tables via the create and drop function. The create function will create a new
table in the database. The Table constructor takes as input the name of the table, the
number of columns, and the index of the key column. The drop function drops the
specified table. In this milestone, we have also added open and close functions for
reading and writing all data (not the indexes) to files at the restart.

1 Please note that python pickle cannot be used for storing your data on disk.

5

https://github.com/msadoghi/165a-winter-2024
https://docs.python.org/3/library/pickle.html

Instructor: Mohammad Sadoghi Due Date: February 25, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

The Query class provides standard SQL operations such as insert, select,
update, delete, and sum. The select function returns the specified set of
columns from the record with the given search key (the search is not the same as the
primary key). In this milestone, we use any column as the search key for the select
function, thus returning more than one row and exploiting secondary indexes to speed
up the querying. The insert function will insert a new record in the table. All columns
should be passed a non-NULL value when inserting. The update function updates
values for the specified set of columns. The delete function will delete the record with
the specified key from the table. The sum function will sum over the values of the
selected column for a range of records specified by their key values. We query tables by
direct function calls rather than parsing SQL queries.

The Table class provides the core of our relational storage functionality. All columns are
64-bit integers in this implementation. Users mainly interact with tables through queries.
Tables provide a logical view of the actual physically stored data and mostly manage
the storage and retrieval of data. Each table is responsible for managing its pages and
requires an internal page directory that, given a RID, returns the actual physical location
of the record. The table class should also manage the periodical merge of its
corresponding page ranges.

The Index class provides a data structure that allows fast processing of queries (e.g.,
select or update) by indexing columns of tables over their values. Given a certain
value for a column, the index should efficiently locate all records having that value. The
key column of all tables is usually indexed by default for performance reasons. The API
for this class exposes the two functions create_index and drop_index. The index
can be created on any column of the table. Persisting indexes on disk are optional, and
indexes can be re-constructed upon restart.2

The Page class provides low-level physical storage capabilities. In the provided
skeleton, each page has a fixed size of 4096 KB. This should provide optimal
performance when persisting to disk, as most hard drives have blocks of the same size.
You can experiment with different sizes. This class is mostly used internally by the
Table class to store and retrieve records. While working with this class, keep in mind
that tail and base pages should be identical from the hardware’s point of view.

2 Please note that python pickle may be used for storing your indexes on disk (but not your data pages).

6

https://docs.python.org/3/library/pickle.html

Instructor: Mohammad Sadoghi Due Date: February 25, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

The config.py file is meant to act as centralized storage for all the configuration options
and the constant values used in the code. It is good practice to organize such
information into a Singleton object accessible from every file in the project. This class
will find more use when implementing persistence in the next milestone.

Milestone Deliverables/Grading Scheme: What to submit?
You will have a choice on how your milestone will be graded. Either (1) the entire grade
will be determined by the autograder or (2) 50% of the grade will be determined by the
autograder, and 50% will be determined through oral presentation. Prior to the deadline
for each milestone, each group must decide between option (1) or (2); once each group
submits their choice, this cannot be changed for that milestone. Each group must vote
on option (1) or (2) internally, and the vote of the majority will determine the choice.

The actual presentation and evaluation will be scheduled after the milestone due date
from 8:00am-7:00pm on February 28, 2025. Each group will be assigned a dedicated
15-minute timeslot. The presentation must be completed strictly in 8 minutes (no extra
time would be granted), followed by a 4-minute Q&A and a 3-minute live demo. During
the 8-minute presentation, each student must present their respective parts. In Q&A,
each team member will be asked questions related to any part of the milestone to
ensure every student’s participation and understanding of the whole assignment.

Presentation Format:
● The milestone overview: the design and solution, what was accomplished, and

how? (8 minutes)
● Q/A: Questions about various aspects of the project (4 minutes)
● Demo: A live demonstration of the code, which includes adding, modifying, and

querying the data (3 minutes)

Important Note:
1. The milestones are incremental, building on each other. For example, your

Milestone 3 depends on your Milestone 2, and any missing functionalities in your
code will affect future milestones.

7

https://lstore.expolab.org/
https://lstore.expolab.org/

Instructor: Mohammad Sadoghi Due Date: February 25, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

Grading Policy
As noted in the course syllabus, for each milestone, a portion of the grade is devoted to
the presented project as a whole on which all members receive the same grade (50% of
the grade), but the remaining portion is individualized (50% of the grade), so for each
milestone (especially when presentation option is chosen), not all group members may
receive the same grade. In each milestone, a bonus of up to 10% can be gained to
encourage further taking a risk, going the extra mile, and just being curious & creative.

For each milestone, each group must submit an attribution section in which they
specifically state each person's role and the percentage of their contribution. In a group
of 5, it is expected that a person will complete 15-20% of the overall project. Of course,
determining the percentage is not approximate, but the point is that every member
contributes fairly. No contribution means a grade of 0.

Late Policy
There will be a 10% penalty for each late day. After two late days, the homework will not
be accepted.

Course Policy
In this class, we adopt the UC Davis Code of Academic Conduct, available here.

Disclaimer
The external links and resources that are being provided on this handout serve merely
as a convenience and for informational purposes only; they do not constitute an
endorsement or approval of their products, services, or opinions of the corporation or
organization, or individual. As a student, developer, or researcher, it is your sole
responsibility to learn how to assess the accuracy and validity of any external site. This
is a crucial skill in the age of the Internet, where anyone can publish anything!
__
Changelog:
Milestone Handout Version v1: January 1, 2025 (initial posted version)

8

https://ossja.ucdavis.edu/code-academic-conduct?utm_source=sja&utm_medium=redirect-page

