
Instructor: Mohammad Sadoghi Due Date:March 11, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

Milestone 3: Multi-threaded, In-memory & Durable L-Store
ECS 165A - Winter 2025

In this milestone, we will take the first step to support transactional semantics and
concurrent execution, i.e., the Atomicity and Isolation properties in the transactional
ACID semantics.

The main objective of this milestone consists of two parts. (1) Transaction Semantics:
to create the concept of the multi-statement transaction with the property that either all
statements (operations) are successfully executed and the transaction commits or
none will and the transaction aborts (i.e., atomicity). (2) Concurrency Control: to allow
running multiple transactions concurrently while providing serializable isolation
semantics by employing two-phase locking (2PL) without the need to wait for locks.

The overall goal of this milestone is to create a multi-threaded and durable L-Store
[Paper, Slides], capable of performing transactions. In order to receive an outstanding
grade (A+) besides basic requirements, you are encouraged to provide experimental
analysis with graphs (see the L-Store paper), and/or extended query capabilities. Bonus:
Kindly note that the fastest L-Store implementations (the top three groups) will be
rewarded. You may also earn bonus points for creative design by improving upon
L-Store with novel or efficient concurrency protocols (beyond No Wait 2PL) and the use
of the multithreading facilities. Overall, each group may receive up to 10% bonus.

Think Long-term, Plan Carefully.
Be curious, Be creative!

Transaction Semantics
In database systems, a transaction is a logical unit of work that accesses and/or
modifies the database, and it may contain one or more read and write operations. A
transaction in a database must maintain four essential properties: Atomicity,
Consistency, Isolation, and Durability, commonly known together as ACID.1

Atomicity: Transactions are often composed of multiple statements (read or write
operations). Atomicity guarantees that each transaction is treated as a single "unit",

1 https://en.wikipedia.org/wiki/ACID

1

https://www.researchgate.net/publication/324150481_L-Store_A_Real-time_OLTP_and_OLAP_System
https://expolab.org/papers/l-store-slides.pdf
https://en.wikipedia.org/wiki/ACID

Instructor: Mohammad Sadoghi Due Date:March 11, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

which either succeeds completely or fails completely: if any of the statements
constituting a transaction fails to complete, the entire transaction fails, and the
database is left unchanged. An atomic system must guarantee atomicity in every
situation, including power failures, errors, and crashes. A guarantee of atomicity
prevents updates to the database from occurring only partially.

Isolation: Transactions are often executed concurrently (e.g., multiple transactions
reading and writing to a table at the same time). Isolation ensures that the concurrent
execution of transactions leaves the database in the same state that would have been
obtained if the transactions were executed sequentially. Isolation is the main goal of
concurrency control; depending on the method used, the effects of an incomplete
transaction might not even be visible to other transactions.

Durability: Durability guarantees that once a transaction has been committed, it will
remain committed even in the case of a system failure (e.g., power outage or crash).
This usually means that completed transactions (or their effects) are recorded in
non-volatile memory.

In the previous milestone, we focused on the durability aspect. The first goal of this
milestone is the ability to add the notion of a multi-statement transaction, that is, to
create a transaction consisting of a set of read and write operations where its execution
adheres to the atomicity property. If one of the transaction operations fails (perhaps due
to failure in acquiring locks), the transaction must abort, and all effects of the
transaction (any operation executed already) must be rolled back and undo. If any
base/tail record created as a result of an aborted transaction need not be removed from
the database, it can just be marked as deleted. If the transaction runs successfully, it
will be committed to the databases, and the resulting changes will be persisted and be
remembered forever. For an aborted transaction, the thread should keep trying to
execute it until it gets committed.

Multithreading Concurrency Control
Thus far, our L-Store implementation has been limited to a single-threaded execution,
namely, serial execution of transactions one at a time. Yet any commercial database
must have the ability to support the concurrent execution of transactions in order to
fully utilize all available hardware resources.

2

Instructor: Mohammad Sadoghi Due Date:March 11, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

The concurrent execution adds many interesting challenges to the database design and
implementation, protecting against race conditions while coping with the contention
that may occur among threads accessing shared data. In general, it is the role of the
concurrency control (offering the Isolation property of ACID) layer or transaction
manager to handle these concurrency intricacies through the use of clever
synchronization primitives such as locks and semaphores (i.e., pessimistic
concurrency).

We will adopt a strict 2PL protocol for this milestone along with no wait property (which
eliminates deadlocks), meaning if a transaction requests a shared or exclusive lock on a
record that cannot be granted, the transaction simply aborts and undo any changes it
has made. You may create a lock manager (typically a hashtable) that would allow
(un)locking each record by a transaction. You have complete freedom on how to
implement your 2PL and lock manager. Of course, you are encouraged to implement any
other advanced concurrency protocols that you wish as a bonus (e.g., 2VCC, QueCC).

Furthermore, you need to pay attention when accessing any shared data structures such
as indexes or bufferpool. You may protect these data structures with an additional set
of locks, and you have the complete freedom to design your own scheme.

Due to the Global Interpreter Lock (GIL), real multithreading is not achievable in
CPython as the CPython interpreter only allows one thread to run Python bytecode at a
time, a limitation of the language. However, multithreading conceptually is possible and
useful, especially when performing any I/O operations, as they are handled outside of
the interpreter. Therefore, when a thread is blocked by an I/O request, another thread
can still run the bytecode. As a result, Python code can only achieve concurrency, not
true parallelism.

Note that although no two threads can access the same resource at the same time due
to the GIL limitation, race conditions can still occur as many operations, such as evicting
a page from the buffer pool, are not inherently atomic, meaning a context switch to a
different thread might happen in the middle of the operation. If not handled properly,
these situations can result in inconsistencies and data corruption. More importantly,
when executing multi-statement transactions, multiple transactions may access an
overlapping set of records, which is why 2PL is needed.

3

https://www.researchgate.net/publication/276465234_Reducing_database_locking_contention_through_multi-version_concurrency
https://www.researchgate.net/publication/329625027_QueCC_A_Queue-oriented_Control-free_Concurrency_Architecture

Instructor: Mohammad Sadoghi Due Date:March 11, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

One should use the threading module in Python to work with threads. This module
provides a high-level threading interface and synchronization primitives. As thread
creations are costly, databases often avoid spawning and removing threads on the fly
and rely on a fixed-size number of worker threads (a pool of threads) initialized at the
start of the application to distribute the workload. Transactions will be assigned to
worker threads, and they will concurrently execute the assigned transactions to them.

The threading module offers implementations for a number of common locking
primitives. The threading.Lock class is an implementation of a Mutually Exclusive
(Mutex) lock that can be used by the 2PL protocol for locking records. Note that a Lock
does not by itself “lock” any objects but is merely acquired or released by different
threads. The programmer decides what resources are to be protected by each lock.

Implementation
We have provided a code skeleton that can be used as a baseline for developing your
project. This skeleton is merely a suggestion, and you are free and even encouraged to
come up with your own design.

You will find three main classes in the provided skeleton. Some of the needed methods
in each class are provided as stubs. But you must implement the APIs listed in db.py,
query.py, table.py, transaction.py, transaction_worker.py, and
index.py; you also need to ensure that you can run main.py and tester files to allow
auto-grading as well. We have provided several such methods to guide you through the
implementation.

The Database class is a general interface to the database and handles high-level
operations such as starting and shutting down the database instance and loading the
database from stored disk files. This class also handles the creation and deletion of
tables via the create and drop function. The create function will create a new
table in the database. The Table constructor takes as input the name of the table, the
number of columns, and the index of the key column. The drop function drops the
specified table. In this milestone, we have also added open and close functions for
reading and writing all data (not the indexes) to files at the restart.

The Query class provides standard SQL operations such as insert, select,
update, delete, and sum. The select function returns the specified set of

4

https://github.com/msadoghi/165a-winter-2024

Instructor: Mohammad Sadoghi Due Date:March 11, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

columns from the record with the given search key (the search is not the same as the
primary key). In this milestone, we use any column as the search key for the select
function; thus, returning more than one row and exploiting secondary indexes to speed
up the querying. The insert function will insert a new record in the table. All columns
should be passed a non-NULL value when inserting. The update function updates
values for the specified set of columns. The delete function will delete the record with
the specified key from the table. The sum function will sum over the values of the
selected column for a range of records specified by their key values. We query tables by
direct function calls rather than parsing SQL queries.

The Transaction class allows for the creation and management of transactions. Queries
are added to the transaction through the add_query method. This method takes as
input a Query object, the method (update, select, etc.) to be called on that query and
the arguments to the method. These will be saved in a list and called in the order they
were added when the query is run.

The TransactionWorker class is a representation of a worker thread in the template
code. It is initialized with a list of transactions to run concurrently with other worker
instances. You may create a fixed number of workers, each with its own thread, and
pass them a list of functions to run. The tester code for this milestone will create its
own TransactionWorker instances and assign Transactions to them.

The Table class provides the core of our relational storage functionality. All columns are
64-bit integers in this implementation. Users mainly interact with tables through queries.
Tables provide a logical view of the actual physically stored data and mostly manage
the storage and retrieval of data. Each table is responsible for managing its pages and
requires an internal page directory that, given a RID, returns the actual physical location
of the record. The table class should also manage the periodical merge of its
corresponding page ranges.

The Index class provides the interface to add or remove indexes to speed up queries
(e.g., select or update). Each Table will have a single Index object accessible
through table.index that holds the indices on various columns. Given a search key
on a column, its index should efficiently locate all records matching the search key. The
primary key column of all tables is indexed by default. The external API for this class
exposes the two functions create_index and drop_index. These functions are

5

Instructor: Mohammad Sadoghi Due Date:March 11, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

accessed by the tester through the table.index handle. No index should be created
on a non-key column unless the user has called create_index.

The Page class provides low-level physical storage capabilities. In the provided
skeleton, each page has a fixed size of 4096 KB. This should provide optimal
performance when persisting to disk, as most hard drives have blocks of the same size.
You can experiment with different sizes. This class is mostly used internally by the
Table class to store and retrieve records. While working with this class, keep in mind
that tail and base pages should be identical from the hardware’s point of view.

The config.py file is meant to act as centralized storage for all the configuration options
and the constant values used in the code. It is good practice to organize such
information into a Singleton object accessible from every file in the project. This class
will find more use when implementing persistence in the next milestone.

Milestone Deliverables/Grading Scheme: What to submit?
You will have a choice on how your milestone will be graded. Either (1) the entire grade
will be determined by the autograder or (2) 50% of the grade will be determined by the
autograder, and 50% will be determined through oral presentation. Prior to the deadline
for each milestone, each group must decide between option (1) or (2); once each group
submits their choice, this cannot be changed for that milestone. Each group must vote
on option (1) or (2) internally, and the vote of the majority will determine the choice.

The actual presentation and evaluation will be scheduled after the milestone due date
from 8:00am-7:00pm on March 13, 2025. Each group will be assigned a dedicated
15-minute timeslot. The presentation must be completed strictly in 8 minutes (no extra
time would be granted), followed by a 4-minute Q&A and a 3-minute live demo. During
the 8-minute presentation, each student must present their respective parts. In Q&A,
each team member will be asked questions related to any part of the milestone to
ensure every student’s participation and understanding of the whole assignment.

Presentation Format:
● The milestone overview: the design and solution, what was accomplished, and

how? (8 minutes)
● Q/A: Questions about various aspects of the project (4 minutes)

6

https://lstore.expolab.org/
https://lstore.expolab.org/

Instructor: Mohammad Sadoghi Due Date:March 11, 2025
TAs: Apratim Shukla Submission Method: Canvas

Shaokang Xie Score: 20%
__

● Demo: A live demonstration of the code, which includes adding, modifying, and
querying the data (3 minutes)

Grading Policy
As noted in the course syllabus, for each milestone, a portion of the grade is devoted to
the presented project as a whole on which all members receive the same grade (50% of
the grade), but the remaining portion is individualized (50% of the grade), so for each
milestone (especially when presentation option is chosen), not all group members may
receive the same grade. In each milestone, a bonus of up to 10% can be gained to
encourage further taking a risk, going the extra mile, and just being curious & creative.

For each milestone, each group must submit an attribution section in which they
specifically state each person's role and the percentage of their contribution. In a group
of 5, it is expected that a person will complete 15-20% of the overall project. Of course,
determining the percentage is not approximate, but the point is that every member
contributes fairly. No contribution means a grade of 0.

Late Policy
There will be a 10% penalty for each late day. After two late days, the homework will not
be accepted.

Course Policy
In this class, we adopt the UC Davis Code of Academic Conduct available here.

Disclaimer
The external links and resources that are being provided on this handout serve merely
as a convenience and for informational purposes only; they do not constitute an
endorsement or approval of their products, services, or opinions of the corporation or
organization, or individual. As a student, developer, or researcher, it is your sole
responsibility to learn how to assess the accuracy and validity of any external site. This
is a crucial skill in the age of the Internet, where anyone can publish anything!
__
Changelog:
Milestone Handout Version v1: January 1, 2025 (initial posted version)

7

https://ossja.ucdavis.edu/code-academic-conduct?utm_source=sja&utm_medium=redirect-page

