Polkadot

Slashing in sharded systems

Polkadot parts are joint work with Jeff Burges
and Handan Kilinc Alper



Proof of stake and slashing

A permissionless blockchain should be secure if enough participants are
rational.

They typically rewards consensus participants for correctly participating.

Proof of stake design goal: If most stake is in the hands of rational and
(somewhat) active actors, then the system is secure.

Proof of stake protocols can also punish participants who incorrectly
participate in the consensus, by slashing them i.e. taking away their stake.



Rationality and honesty assumptions

We would like to understand the correctness of complex protocols under
rationality alone

But typically we cannot do this. So instead we make honesty assumptions,
like that >2/3 of participants/power are honest

Honesty assumptions alone are enough to show the correctness of
protocols.

Can we get more by making economic assumptions as well as honesty
assumptions?



Is slashing a good idea? |

Suppose there is a BFT protocol to secure a blockchain, which is secure if >1/2
(synchronously safe case) or >2/3 (asynchronously safe case) of consensus
participants/power are honest

If >1/2 or >2/3 of participants/power are honest then we only suffer a small
penalty to performance from dishonest participants

If >1/2 or >2/3 of participants/power are dishonest and colluding, then they can
make any valid chain canonical.

They can censor the chain. In particular they won’t include any reports that cause
them to be slashed.

In the asynchronously safe case, If >1/3 and <2/3 of participants/power are
dishonest and colluding, then they can stop the protocol from deciding anything.



Is slashing a good idea? |

* A continuously successful attack does not result in anyone being
slashed.

* Slashing incorrect behaviour disincentives it when there is no
successful attack

* Slashing disincentives participation in staking.

* “Professorcoins” do not slash e.g. Algorand, Avalanche, Cardano



Slashing in sharded or interoperating
protocols

Misbehaviour on one chain can be reported and slashed on another
chain.

Layer 2 protocols — most transactions off main chain, only use main
chain for disputes

Sharding with a main (relay, beacon, hub) chain
Bridges — can have relay on one chain to follow consensus on the other

and consensus misbehaviour on the chain with the relay can be
reported on the original chain.



Sharding with only honesty assumptions

A system has s shards, n participants with equal power called validators, m=n/s
participants per shard.

Every time period, each shard has m participants chosen at random with all
subsets of m participants having equal probability. Then each shard uses these in
a BFT protocol. We consider the system for t such time periods.



Sharding with only honesty assumptions: Analysis

Each shard needs > % or >2/3 honest validators to function correctly. We assume that the
whole system has >2/3 or >5/6 honest validators respectively.

Model as m validators are bad independently with probability 5 or 2/3. Then we can get a
bound of the probability that a particular shard does not function correctly in a particular
time period using Hoeffding’s inequality as at most:

exp(-2m (1/6)72)=exp(m/18)

For s shards to be correct in each of t time periods except with
probability p we need

m > 18 In (st/p)

e.g. for 100 shards, 365x40 time periods, p=0.01, we’d want

m > 338.4



Sharding with slashing

As with layer 2 systems we can use a central (unscalable) chain to deal with disputes.

If just one validator on a shard is honest, they can report misbehaviour to the central
chain. Either they include a proof or a complaint causes everyone to check.

This breaks scalability, but this is paid for by slashing someone. We do not believe what
shard validators decide for some challenge period.

For s shards to be correct in each of t time periods except with
probability p we need

2/3 m < p/st
e.g. for 100 shards, 365x40 time periods, p=0.01, we’d want

m > 46.3



Sharding with slashing: issues

Availability — if the one validator does not have the data in the challenge period, they
cannot point out its invalidity.

We can make availability more robust using erasure coding. The protocol distributes pieces
of each shard to every validator, and they agree it is available before the challenge period
starts.

Attacker knows when to mount an attack: Just wait until all m validators on a
shard are selected from a malicious colluding set.

Cost of an attack: It only costs an attacker an O(1/s) fraction of stake to mount an attack.



s it even possible to be more secure than than O(1/s)
attack cost?
If

1. Checking validity is atomic
2. Each validator can only check O(1) blocks
Then an average of O(1/s) validators check each shard block. If all validators on

the least checked shard collude then they can attack the system but only be
slashed with total cost O(S/s) where S is the total stake in the system.



Is slashing a good idea? Il

Rationality is Self-Defeating in Permissionless Systems — Bryan
Ford and Rainer Bohme

The total amount of money in the world, M >> Amount of stake in the
system, S >> maximum total reward/punishment for actor(s) capable of
attacking the system, V

Therefore it may at some point be worth someone paying V to take down
the system or steal >V money.



The expected cost of an attack

detection probability

Expected cost = Cost of an attack attempt X —
success probability

Make detection probability high = 1. Then success probability needs only
to be Q(1/s). Elimination the In t term helps a lot.



Using unknown participants

An adversary attacking participants can only do so if they know who they are.

Can choose participants via proof of work or verifiable random functions (e.g. Algorand,
Ouroboros family). Identity is unkown until they participate.

Then we can get a protocol that works under honesty assumptions even with a
few participants deciding.

But if every validator runs hacked software, then they can rationally take bribes
offered by a smart contract on another chain.



Availability and validity in Polkadot

1. m backing validators assigned to the shard claim a block is correct

2. Erasure coded pieces are distributed to all validators. 2/3 agree that
this happened correctly

3. An average of m’ approval validators choose to check this shard if their
VRF tells them to.

4. The backing validators acquire the erasure coded pieces for the block,
reconstruct it, check its validity and broadcast the result

5. If any say it is invalid, escalate, otherwise after some time, agree on it



Availability and validity in Polkadot: Analysis

Out of the 2n/3 honest validators, the number assigned to this shard is distributed as
Binomial(2n/3, m’/n) ~ Poisson(2m’/3)

Therefore the probability that none check is approximately

exp(-2m’/3)

The expected cost of an attack is

(m S/n) exp(2m’/3)

If m=m’=n/2s, then the cost is more than S when

m’ > (3/2)In(2s)

So when s=100, we need

m+m’>13.8



Can a similar design work with bridges?

Imagine trying to follow a BFT consensus protocol on another chain. Checking
signatures or even including them and validator’s public keys, can be
expensive so we want to reduce the number we include and check.

1. Atransaction claims that >2n/3 validators signed a statement s. It includes a
bitfield of claimed signers and one explicit signature.

2. A smart contract checks the signature and stores the claim

3. A second transaction includes signatures of m random validators, selected by
some on-chain randomness. The claim is accepted if all signed it

If >n/3 validators sign it, then this will accept with probability 22{-m}.
A larger m allows us to deal with biasable randomness, e.g. PoW block
hashes under assumptions about consensus participants on the
checking chain.



Conclusion

* |t makes sense to combine economic and honesty
assumptions.

e This allows more scaling

* Consensus systems not existing in isolation makes
rationality assumptions more interesting!



