
How Ethereum Works
John Long,
Head Instructor for Blockchain at Davis

Overview

● Historical Context: Why Ethereum?
● The tech you already know (and then some)
● The “secret sauce”: What Makes Ethereum, Ethereum
● Shortcomings and Concluding remarks

Early Cryptocurrency History

● Bitcoin launched in 2008
○ Proof that a digital, decentralized, consensus IS FEASIBLE

● Altcoin Flood
○ Alternative cryptocurrencies attempted to address issues that Bitcoin had such as…
○ Incentivization: Shouldn’t nodes be rewarded as well?
○ Centralization: more and more mining power hoarded by single individuals/groups
○ Security: What if SHA-256 is compromised?

Birth of Ethereum

● Launched in 2014 by Vitalik Buterin et al.
● Had the idea of leveraging blockchain technology for decentralized

applications
○ Apps that do not need to rely on a single provider for access!

● Recognized the need for a more powerful scripting language
○ Bitcoin has a language, but is NOT TURING COMPLETE
○ Designed for complex transactions

Ethereum Milestones

● Ethereum itself has a rich history
○ Frontier and Homestead - Initial release, making sure everything worked properly
○ Byzantium and Constantinople
○ “Serenity”/Ethereum 2.0 - Focus of Discussion today

● Some Updates require hard forks
○ Protocol Upgrades
○ Blockchain based on new protocol will no longer be compatible with older nodes
○ Everybody has to upgrade ASAP to do anything with the network

Similarities to Bitcoin

● Uses a Blockchain with the same hash linking technique found in Bitcoin
○ Still possible to have orphaned blocks/parallel chains

● Incentive exists for people to mine, expend computational power
● Nodes hold copies of the chain, responsible for verification and distribution of

data

What Makes Ethereum Ethereum

● The Smart Contract
● Traditional Contract is defined as…

○ Agreement between at least two people
○ Recognized by a trusted third party

● Problems
○ What if the third party is compromised?
○ Will any degree of vetting be enough?

● Idea by Nick Szabo (legal scholar/CS)
○ Have a contract that is enforced by a machine
○ Ex: vending machine

● One Step Further: Have contracts be enforced by Blockchain tech + Turing
Completeness

How Smart Contracts Work in Ethereum

● Developer compiles a contract into something the nodes on the blockchain
network understand (Solidity, Vyper, etc. -> EVM Opcodes)

● Compiled code piggybacks on transaction
● Nodes recognize contract is NOT a transaction
● Smart contract is given its own address (like a user!)
● All nodes WILL EXECUTE the contract!

○ Stay tuned on how Ethereum Nodes differ from Bitcoin Nodes

Ethereum Nodes

● Hold copies of the Ethereum blockchain but also execute code!
● Each node possesses the “EVM” or Ethereum Virtual Machine

○ Stack-based
○ Incredibly limited set of opcodes (opcodes usually a byte, <255)
○ Sandboxed, code run on EVM CANNOT interfere with host node

● Concurrency vs. Parallelism
○ Every node runs the contract when it goes through, must reach current contract “state”

■ Great for reliability, bad for performance
○ DO NOT CONFUSE WITH PARALLELISM!

■ Can’t take computationally expensive payload and split it

Gas and Ether

● Ether - name of 1 unit of Ethereum crypto
● Gas - unit of computation

○ Purchased via Ether (small fraction of Ether, a “gwei”)
○ Each smart contract operation costs Gas
○ Can have static vs dynamic costs (Hashing data vs math)

● Want to separate utility from market volatility
● Need gas to power a car, but you pay for gas with money

Decentralized Applications

● Smart Contracts have own address, invoked via transactions
● Smart Contracts can invoke other smart contracts
● Can have multiple smart contracts work together

○ “Spoke and Hub” model as an example

● Allows for Decentralized Applications
○ Run entirely on the Ethereum blockchain, does not require a single server

Decentralized Applications (cont.)

● Decentralized Autonomous Organizations (DAOs)
● Have certain organizational rules codified as smart contracts

○ Ex: Managers get paid via smart contract
○ Ex: payment conditional on some vote

● Better integration with tokens/voting

Ethereum Block Size

● NOT FIXED, dependent on “Gas Limit”: how much gas all the
transactions/data in the block contains
○ Around 10 million Gas right now

● Considering that certain opcodes/instructions are costlier than others, allows
for variable block sizes

● Also, miners collectively vote on what the gas limit should be
○ Reflects the current mining capabilities

Ethereum Mining

● Currently PoW, but will transition to PoS
● SHA-3 related, but very memory intensive

○ Check out Dagger-Hashimoto if interested, designed to deter ASIC implementation

● “Difficulty Bombs”
○ Implemented to deter centralization of power
○ After fixed number of blocks, the difficulty will skyrocket for miners
○ Despite this, ASIC miner does exist, but the profit margin is too narrow for much centralization

Ethereum “Uncles/Ommers”

● Highly possible that two valid blocks will be submitted simultaneously
● There are now two valid chains

○ Longest chain will become the valid one and the other is orphaned

● Traditionally, miners were not rewarded for such things
● In Ethereum PoW orphans are known as “Uncles/Ommers”
● Reduced reward is still given in an effort to deter BTC-like pooling

Shortcomings

● Scalability Trilemma (Also from Buterin)
○ Decentralization, Security, Scalability (you can only have two out of the three)

● Speed
○ Ethereum is not designed for high-performance applications

● Immutability
○ The DAO incident
○ Contracts can only be destroyed, not replaced

● Explosive Blockchain Growth
○ Variable block size + fast generation + smart contract data ON TOP of traditional transactions

allows for massive Blockchain size
○ Deters people from creating nodes

● Oracle Problem
○ Smart contracts can’t get data about the outside world

The DAO Incident

● How a DAO is usually started
○ Smart contracts created with initial logic for taking Ether in exchange for tokens
○ Tokens represent voting rights for organization
○ Period of time where people buy tokens
○ Then the DAO begins operation

● “The DAO” had a flaw in exchange logic, hacker siphoned away millions of
dollars worth of Ether

● Users split
○ Can leave things “as-is”
○ Attempt to undo the damage through fork
○ No way to easily undo the damage

Ethereum 2.0: What’s Next

● Codename “Serenity” update
● Full shift to Proof-of-Stake

○ People “lock up” Ether to get the chance to validate transactions
○ False transactions can cause you to lose Ether

● Shard Chains
○ Redistribute parts of main chain to other nodes for faster processing
○ Tantalizing hints of parallelism!

● Beacon Chain
○ Helps synchronize shards, allows them to reach consensus

Thank You!

