Proof Systems and SNARKSs

Benedikt Buinz, Stanford

Managing assets on a blockchain: key principles

* Universal verifiability of blockchain rules
= all data written to the blockchain is public; everyone can verify
= added benefit: interoperability between chains

* Assets are controlled by signature keys
= assets cannot be transferred without a valid signature
(of course, users can choose to custody their keys)

Naive reasoning:

universal verifiability = blockchain data is public

= all transactions data is public
otherwise, how we can verify Tx?

not quite ...

crypto magic = private Tx on a publicly verifiable blockchain

Public blockchain & universal verifiability

abstractl
public blockchain (y)

current
state

new state

encrypted encrypted
(or committed) (or committed)

 Tx data: encrypted (or committed)

 Proof m: zero-knowledge proof that (reveals nothing about Tx data)
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct

Public blockchain & universal verifiability

abstractl
public blockchain (y)

current
state

encrypted

anyone ca

new state

encrypted
itted , (or committed)
(or committed) verify o a

 Tx data: encrypted (or committed)

 Proof m: zero-knowledge proof that (reveals nothing about Tx data)
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct

Zero Knowledge Proof Systems

(1) arithmetic circuits

* Fixafinite field F ={0,..,p—1} forsome prime p>2.

* Arithmeticcircuit: C: F* = [F
* directed acyclic graph (DAG) where x1(x1 + 22+ 1(xz — 1)

* internal nodes are labeled +, —, or X
* inputs are labeled 1, x4, ..., x,

* defines an n-variate polynomial /G{
with an evaluation recipe B&

 |C| = # multiplication gatesin C

Boolean circuits as arithmetic circuits

Boolean circuits: circuits with AND, OR, NOT gates

Encoding a boolean circuit as an arithmetic circuit over IF,, :
* AND(x,y) encodedas x:-y
* OR(x,y) encodedas x+y—x-y &

* NOT(x) encodedas 1-—x)
X _y | OR(x,y)
0 O 0
(1)—(von) 1o
1-x y 1 0 1
N L) ON - Prvsen
) (or) > W—p o P S 11| 1

Interesting arithmetic circuits

* Cian(h, m): outputs Oif SHA256(m)=h, and #0 otherwise

Chash(hr m) = (h — SHAZSG(m)) ’ | Chashl = 20K gates

* Cgllpk, m), 0): output 0 ifois
a valid ECDSA signature of m under pk

(2) non-interactive proof systems (o)

Public arithmetic circuit: C(x, w) — [,
public statement in IFg —J L— secret withess in IFg‘

Let x € IFg . Two standard goals for prover P:

(1) Soundness: convince Verifier that dw s.t. C(x,w) =0
(e.g., 3w suchthat [H(w) =x and 0 <w < 200])

(2) Knowledge: convince Verifier that P “knows” w s.t. C(x,w) =0

(e.g., P knows aw such that H(w) = x)

The trivial proof system

Why can’t prover simply send w to verifier?
* Verifier checks if C(x,w) = 0 and accepts if so.

Problems with this:

(1) w might be secret: prover cannot reveal w to verifier
(2) w might be long: we want a “short” proof

(3) computing C(x, w) may be hard: want to minimize Verifier’s work

Non-interactive Proof Systems (corne)

Public arithmetic circuit: C(x, w) — [,

public input in [—J L— secret witness in [F}!

setup: S(C) — public parameters (S, S,)

Prover P(S,, X,W) Verifier V(S,, X, TT)
proof TT

output accept or reject

Non-interactive Proof Systems (corne)

A non-interactive proof system is a triple (S, P, V):
* S(C) — public parameters (S,,S,) for prover and verifier
* P(S,, x,w) — proof 7

* V(S, x,) — accept or reject

proof systems: properties (informal)

Prover P(pp, X, W) Verifier V (pp, X, TT)
proof TT

Complete: vx,w: C(x,w) =0 = V(S, x, (Sp,lic,w
accept

Proof of knowledge: V accepts = P “knows” ws.t. C(x,w) =
0

Zero knowledge (optional): (x,) “reveals nothing” about w

(b) Zero knowledge

(S, P, V) is zero knowledge if proof m “reveals nothing” about w

Formally: (S, P, V) is zero knowledge for a circuit C
if there is an efficient simulator Sim,
such that for all x € F; s.t. 3w:C(x,w) = 0 the distribution:

(Sp, Sv x, ™) where (S,,S,) « S(C), m+ P(x, w)
is indistinguishable from the distribution:

(Sp, Sv x, ™) where (S, S,,) < Sim(x)

key point: Sim(x) simulates proof m without knowledge of w

(3) Succinct arguments: SNARKSs

Goal: P wants to show that it knows w s.t. C(x,w) =0

Succinct:

« Proof m should beshort [i.e., || = 0(log(|C]), 1)]

-

e Verifying m should be fast [i.e., time(V)=0(|x|, log(|C])|, 2)]

note: if SNARK is zero-knowledge, then called a zkSNARK

(3) Succinct arguments: SNARKSs

Goal: P wants to show that it knows w s.t. C(x,w) = 1

verifier cannotread C !! Instead,
Succinct: |V relies on setup(C) to pre-process (summarize) C'in S,

* Proof m should beshort [i.e., || = 0(‘ 2]

« Verifying m should be fast [i.e., time(V) = 0(|x|, log(|C|)

Ml

-

note: if SNARK is zero-knowledge, then called a zkSNARK

An example

Prover says: lknow (xq,..,x,) € X suchthat H(xy ..,x,) =y

SNARK: size(rr) and VerifyTime(rr) should be O(logn) !

statement: y statement: y]

witness: Xy, ..., X,

@ Proof) Q accept or reject
(LTI TTTTTTTT]

Prover Verifier

An example

How is this possible ??7?

e ———

SNARK: size(r) and VerifyTime(rr) should be O(logn) !

statement: y statement: y]

witness: Xy, ..., Xn

@ Proof 1T) Q accept or reject
CITTTTTTTTTITT]

Prover Verifier

Types of pre-processing Setup

Recall setup for circuit C: S(C) — public parameters (S, S,)

Types of setup:
trusted setup per circuit: S(C) uses data that must be kept secret

compromised trusted setup = can prove false statements
updatable universal trusted setup: (S, S,) can be updated by anyone

transparent: S() does not use secret data (no trusted setup)

Significant progress in recent years

Kilian’92, Micali’94: succinct transparent arguments from PCP

* impractical prover time

GGPR’13, Groth’16, ...: linear prover time, constant size proof o,
* trusted setup per circuit (setup alg. uses secret randomness)
« compromised setup = proofs of false statements

Sonic’19, Marlin’19, Plonk’19, ... : universal trusted setup

DARK’19, Halo’19, STARLK, ... : no trusted setup (transparent)

Types of SNARKS (partial list)

verifier trusted
time setup?

Groth’16
PLONK/MARLIN
Bulletproofs
STARK

DARK

0(1)
0(1)
O(log|C])
O(log|C])

O(log|C])

o(|CY)

o(|CY)
0(1)
0(1)

0(1)

0(1)
0(1)
o(|Cl)
O(log|C])

O(log|C])

yes/per circuit
yes/updatable
no
no

nNo

A typical SNARK software system

SNARK }hea"y }

backend
DSL SNARK > Proof =«
, friendly
program compller> format T
. | oA at .
Circom, X, witness
/oKrates, R':ICRS’
TurboPionk X > acc.ept/
1 verifier reject
| D (S, S,)

zkSNARK applications

Blockchain Applications

Scalability:
 SNARK Rollup (zkSNARK for privacy from pubilic)

Privacy: Private Tx on a public blockchain
e Confidential transactions
e Zcash

Compliance:
* Proving solvency in zero-knowledge

» Zero-knowledge taxes

Blockchain Applications

Scalability:
 SNARK Rollup (zkSNARK for privacy from pubilic)

Privacy: Private Tx on a public blockchain
e Confidential transactions
e Zcash

Compliance:
* Proving solvency in zero-knowledge

» Zero-knowledge taxes

... but first: commitments

Cryptographic commitment: emulates an envelope

$ (K m §

Many applications: e.g., a DAPP for a sealed bid auction

* Every participant commits to its bid,

* Once all bids are in, everyone opens their commitment

Cryptographic Commitments

Syntax: a commitment scheme is two algorithms

—

[. | f . . |
secret randomnessin R commitment string

e commit(msg, r) = com

» verify(msg, com, r) — accept or reject

anyone can verify that commitment was opened correctly

Commitments: security properties

* binding: Bob cannot produce two valid openings for com.

Formally: no efficient adversary can produce
com, (my, ry), (M, ry)

such that verify(my, com, r;) = verify(m,, com, r,) = accept

and m; #m,.

* hiding: com reveals nothing about committed data

commit(m, r) = com, andrisuniformin R (r « R),
then com is statistically independent of m

Confidential Transactions

Confidential Tx (CT)

Goal: hide amounts in Bitcoin transactions.

D c2561b292ed4878bb28478a8cafd1f99a01Ffaeb9c5a906715Fa595cac0e8d1d8 [F) mined Apr 10, 2017 12:38:00 AM

16k4365RzdeCPKGWJDNNBEKXj696MbChwx 0.53333328 BTC 4 1JgVBpw5TDMTR0ZXg9XpPDQRRHENbD5CSPA 0.01031593 BTC (U
1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmRED7 1.47877788 BTC 1AFLhD4EtG2uZmFxmfdXCyGUNqCqD5887u

¢ FEE:0.00179523BTC:>1— will not hide Tx fee ‘ 01031593 BTC ‘

= businesses cannot use for supply chain payments

Confidential Tx;: how?

Bitcoin Tx today: Google: 30 - Alice: 1, Google: 29
\ \

RN

8 bytes

The plan: replace amounts by commitments to amounts

Google: com; — Alice: com,, Google: com;
\ e

—~_

32 bytes

where com; = commit(30, r;), com, = commit(1, r,), com; = commit(29, r;)

Now blockchain hides amounts

D c2561b292ed4878bb28478a8cafd1f99a01faeb9c5a906715fa595cac0e8d1d8 [E) mined Apr 10, 2017 12:38:00 AM
16ka365RzdeCPKGWIDNNBEKs96Mbchwx Sbd6e25fqd ¢ 1JgVBpw5TDMTR0ZXg9XpPDQRRHENbD5CsPA ae23b452d8
1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmRED7 8c528ad9fa 1AFLhD4EtG2uZmFxmFdXCyGUNGCqD5887u 187b6cf54a8

< FEE: 0.00179523 BTC > 1 CONFIRMATIONS ‘ 2.01031593 BTC ‘

How much was transferred ???

The problem: how will miners verify Tx?

Google: com; — Alice: com,, Google: com;

com, = commit(30, r;), com, = commit(1, r,), comz=commit(29, r;)

Solution:

zkSNARK (special purpose, optimized for this problem)

 Google:

CT arithmetic
circuit

(1) privately send r, to Alice
(2) construct a zkSNARK 1 where|statement = x = (com,, com,, com;)

witness =w = (my, ry, My, r,, My, r3)

and circuit C(x,w) outputs O if:

—

(i) com,=commit(m, r;) fori=1,2,3,
(ii) m;=m,+ m; + TxFees,
(iii) my20 and m;20

The problem: how will miners verify Tx?

* Google: (1) privately send r, to Alice
(2) construct zkSNARK proof r that Tx is valid
\ (3) append ™ toTx (need short proof! = zkSNARK)

)
Tx:| proofm, Google: com; — Alice:com,, Google: com,

 Miners: accept Tx if proof m is valid (need fast verification)
= learn Txis valid, but amounts are hidden

Zcash (simplified)

Goal: fully private payments ... like cash, but across the Internet

challenge: will governments allow this ???

Zcash blockchain supports two types of TXOs:
* transparent TXO (asin Bitcoin)
e shielded (anonymized)

a Tx can have both types of inputs, both types of outputs

Addresses and TXOs

H,, H,, H3: cryptographic hash functions. sk needed to spend TXO
for address pk

(1) shielded address: random sk «+ X, pk=H,(sk)

(2) shielded TXO (note) owned by address pk:

- TXO owner has (from payer): valuev and r <+« R

- on blockchain: | coin =H,((pk, v), r) (commit to pk, v)

pk: addr. of owner, v:value of coin, r:random chosen by payer

The blockchain

coins nullifiers transparent-TXOs
coin, nf,
: similar
coin, nf, L.
to Bitcoin
Coing UTXO set
just Merkle root ... append only tree explicit list:

(coins are never removed)

one entry per spent coin

Transactions: an example

owner of coin = H,((pk, v), r) (Tx input)
wants to send coin funds to: shielded pk’, v’
., ,, (Txoutput)
(v=Vv' +Vv") transp. pk”, v

step 1: construct new coin: coin’ = H,((pk’, v’), r’)
by choosing random r’ < R (and sends V’, r’ to owner of pk’)

. pe . ind f coi
step 2: compute nullifier for spent coin nf = H;(sk, i'nnMeeXrﬁector'ene)

nullifier nf is used to “cancel” coin (no double spends)

key point: miners learn that some coin was spent, but not which one!

Transactions: an example

step 3: construct a zZkSNARK proof m for

statement = x = (current Merkle root, coin’, nf, v"’)

witness=w =(sk, (v, r), (pk, Vv’ r’), Merkle proof for coin)

C(x, w) outputs 0 if: with coin := H,((pk=H4(sk), v), r)
" (1) Merkle proof for coin is valid,

The Zcash | (2) coin’ = H,((pk’, v'), r’)

circuit (3) v=Vv'+Vv” and v’ >0 and v’ 20, /

_(4) nf =H;(sk, index-of-coin-in-Merkle-tree)

check

from
Merkle
proof

What is sent to miners

step 4: send (coin’, nf, transparent-TXO, proof m) to miners,

send (v, r’) to owner of pk’

step 5: miners verify
(i) proof m and transparent-TXO
(ii) verify that nf is not in nullifier list (prevent double spending)

if so, add coin’ to Merkle tree, add nf to nullifier list,

add transparent-TXO to UTXO set.

* Tx hides which coin was spent

= coin is never removed from Merkle tree,
but cannot be double spent thanks to nullifer

note: prior to spending coin, only owner knows nf:
nf=H (Sk index of coin)
= M3

7 in Merkle tree

e Tx hides address of coin’ owner

* Miners can verify Tx is valid, but learn nothing about Tx details.

END OF LECTURE

