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Managing assets on a blockchain: key principles

• Universal verifiability of blockchain rules
⇒ all data written to the blockchain is public;  everyone can verify
⇒ added benefit:  interoperability between chains

• Assets are controlled by signature keys
⇒ assets cannot be transferred without a valid signature

(of course, users can choose to custody their keys)



Privacy?

Naïve reasoning:  
universal verifiability    ⇒ blockchain data is public

⇒ all transactions data is public
otherwise, how we can verify Tx?

not quite …

crypto magic   ⇒ private Tx on a publicly verifiable blockchain



Public blockchain  &   universal verifiability

• Tx data:  encrypted (or committed)

• Proof 𝝅:     zero-knowledge proof  that
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct
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Zero Knowledge Proof Systems



(1)  arithmetic circuits
• Fix a finite field    𝔽 = 0,… , 𝑝 − 1 for some prime  p>2.

• Arithmetic circuit:     𝐶: 𝔽𝑛 ⇾ 𝔽
• directed acyclic graph (DAG) where

• internal nodes are labeled  +, −, or ×
• inputs are labeled   1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evaluation recipe 

• |𝐶| = # multiplication gates in 𝐶
𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)



Boolean circuits as arithmetic circuits
Boolean circuits:   circuits with  AND, OR, NOT  gates

Encoding a boolean circuit as an arithmetic circuit over 𝔽𝑝 :
• AND(𝑥, 𝑦) encoded as 𝑥 ⋅ 𝑦
• OR(𝑥, 𝑦) encoded as 𝑥 + 𝑦 − 𝑥 ⋅ 𝑦
• NOT(𝑥) encoded as 1 − 𝑥

𝑥 𝑦 OR(𝑥, 𝑦)
0 0 0
0 1 1
1 0 1
1 1 1

𝑥1

𝑥2

𝑁𝑂𝑇

𝐴𝑁𝐷
𝑂𝑅

𝑥1

𝑥2

1 − 𝑥1

𝑥1 ⋅ 𝑥2

𝑦

𝑧
y + 𝑧 − 𝑧𝑦



Interesting arithmetic circuits

• Chash(h, m):   outputs 0 if   SHA256(m) = h ,   and ≠0 otherwise

Chash(h, m) = (h – SHA256(m))  , | Chash| ≈ 20K gates

• Csig((pk, m), σ):   output  0  if σ is 
a valid ECDSA signature of m under pk



(2)  non-interactive proof systems    (for NP)

Public arithmetic circuit:     𝐶( 𝒙, 𝒘 ) ⇾ 𝔽𝑝
public statement in 𝔽)* secret witness in 𝔽)+

Let  𝒙 ∈ 𝔽)* .      Two standard goals for prover P:

(1) Soundness:  convince Verifier that  ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g.,  ∃𝒘 such that  [ 𝐻(𝒘) = 𝒙 and  0 < 𝒘 < 260 ]   )

(2) Knowledge:   convince Verifier that P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g.,   P knows a 𝒘 such that 𝐻(𝒘) = 𝒙)



The trivial proof system

Why can’t prover simply send  𝒘 to verifier?   
• Verifier checks if   𝐶(𝒙,𝒘) = 0 and accepts if so.

Problems with this:
(1) 𝒘 might be secret:   prover cannot reveal  𝒘 to verifier

(2)   𝒘 might be long:   we want a “short” proof

(3)   computing 𝐶(𝒙,𝒘)may be hard:  want to minimize Verifier’s work



Non-interactive Proof Systems    (for NP)

Public arithmetic circuit:     𝐶( 𝒙, 𝒘 ) ⇾ 𝔽𝑝
public input in 𝔽)* secret witness in 𝔽)+

setup:   S(𝐶)  ⇾ public parameters  (Sp, Sv)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙, 𝝅)
proof 𝜋

output accept or reject



Non-interactive Proof Systems    (for NP)

A non-interactive proof system is a triple  (S,  P,  V):

• S(𝐶)  ⇾ public parameters  (Sp, Sv)    for prover and verifier

• P(Sp, 𝒙,𝒘)  ⇾ proof  𝜋

• V(Sv, 𝒙, 𝝅)  ⇾ accept or reject



proof systems: properties   (informal)
Prover P(pp, 𝒙,𝒘) Verifier V (pp, 𝒙, 𝝅)

proof 𝜋
accept or reject

Complete:  ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ V(Sv, 𝑥, P(Sp, 𝒙, 𝒘)) = 
accept

Proof of knowledge: V accepts  ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 =
0

Zero knowledge (optional):   (𝒙, 𝜋)  “reveals nothing” about 𝒘



(b) Zero knowledge
(S, P, V) is zero knowledge if proof π “reveals nothing” about 𝒘

Formally:   (S, P, V) is zero knowledge for a circuit 𝐶
if there is an efficient simulator Sim,   
such that for all 𝑥 ∈ 𝔽)* s.t. ∃𝑤: 𝐶 𝑥,𝑤 = 0 the distribution:

(Sp, Sv, 𝑥, 𝜋) where   (Sp, Sv) ⇽ S(𝐶) ,  𝜋 ⇽ P(𝑥, 𝒘)

is indistinguishable from the distribution:

(Sp, Sv, 𝑥, 𝜋) where   (Sp, Sv, 𝜋) ⇽ Sim(𝑥)

key point:  Sim(x) simulates proof 𝜋 without knowledge of 𝒘



(3)  Succinct arguments:  SNARKs

Succinct:

• Proof  𝜋 should be short [ i.e.,  |𝜋| = 𝑂( 𝐥𝐨𝐠 𝑪 , 𝜆) ]

• Verifying  𝜋 should be fast [ i.e.,  time(V) = 𝑂( 𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆) ]

note:   if SNARK is zero-knowledge, then called a zkSNARK

Goal:  P wants to show that it knows  𝒘 s.t. 𝐶(𝒙,𝒘) = 0



(3)  Succinct arguments:  SNARKs

Succinct:

• Proof  𝜋 should be short [ i.e.,  |𝜋| = 𝑂( 𝐥𝐨𝐠 𝑪 , 𝜆) ]

• Verifying  𝜋 should be fast [ i.e.,  time(V) = 𝑂( 𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆) ]

note:   if SNARK is zero-knowledge, then called a zkSNARK

Goal:  P wants to show that it knows  𝒘 s.t. 𝐶(𝒙,𝒘) = 1
verifier cannot read 𝐶 !! Instead, 

V relies on setup(𝐶) to pre-process (summarize) 𝐶 in Sv



An example
Prover says:   I know   (𝑥1, … , 𝑥*) ∈ 𝑋 such that   𝐻(𝑥1, … , 𝑥𝑛) = 𝑦

Prover Verifier

statement:  𝑦
witness:   𝑥1, … , 𝑥!

statement:  𝑦

Proof  𝜋 accept or reject

SNARK:   size(𝜋) and  VerifyTime(𝜋) should be  𝑂(log 𝑛) !!



An example

Prover Verifier

statement:  𝑦
witness:   𝑥1, … , 𝑥!

statement:  𝑦

Proof  𝜋 accept or reject

How is this possible ???

SNARK:   size(𝜋) and  VerifyTime(𝜋) should be  𝑂(log 𝑛) !!



Types of pre-processing Setup

Recall setup for circuit 𝐶:    S(𝐶)  ⇾ public parameters  (Sp, Sv)

Types of setup:

trusted setup per circuit:    S(𝐶) uses data that must be kept secret

compromised trusted setup  ⇒ can prove false statements

updatable universal trusted setup:  (Sp, Sv) can be updated by anyone

transparent:   S() does not use secret data (no trusted setup)



Significant progress in recent years

• Kilian’92, Micali’94:   succinct transparent arguments from PCP
• impractical prover time

• GGPR’13, Groth’16, …:  linear prover time, constant size proof  (𝑂#(1))
• trusted setup per circuit   (setup alg. uses secret randomness)

• compromised setup  ⇒ proofs of false statements

• Sonic’19,  Marlin’19,  Plonk’19, … :   universal trusted setup

• DARK’19,  Halo’19,  STARK, …  :  no trusted setup (transparent)



Types of SNARKs   (partial list)

size of
|π|

size of
|Sp|

verifier
time

trusted
setup?

Groth’16 O(1) O(|𝐶|) O(1) yes/per circuit

PLONK/MARLIN O(1) O(|𝐶|) O(1) yes/updatable

Bulletproofs O(log|𝐶|) O(1) O(|𝐶|) no

STARK O(log|𝐶|) O(1) O(log|𝐶|) no

DARK O(log|𝐶|) O(1) O(log|𝐶|) no

⋮ ⋮ ⋮



A typical SNARK software system

DSL
program

Circom,
ZoKrates,

…

compiler

SNARK
friendly
format

R1CS,
AIR,

TurboPlonk

SNARK
backend

x, witness

Proof   𝜋

(Sp, Sv)setup

CPU heavy

verifier

accept/
reject

x



zkSNARK applications



Blockchain Applications
Scalability:   

• SNARK Rollup    (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain
• Confidential transactions
• Zcash

Compliance:
• Proving solvency in zero-knowledge
• Zero-knowledge taxes
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… but first:  commitments

Cryptographic commitment:  emulates an envelope

Many applications:   e.g.,  a DAPP for a sealed bid auction

• Every participant commits to its bid,

• Once all bids are in, everyone opens their commitment

data data



Cryptographic Commitments

Syntax:  a commitment scheme is two algorithms

• commit(msg,  r)  ⇾ com

• verify(msg, com, r)   ⇾ accept or  reject

anyone can verify that commitment was opened correctly

secret randomness in 𝑅 commitment string



Commitments: security properties

• binding:   Bob cannot produce two valid openings for com.
Formally:  no efficient adversary can produce   

com,  (m1, r1), (m2, r2)
such that verify(m1, com, r1) = verify(m2, com, r2) = accept

and   m1 ≠ m2.

• hiding:  com reveals nothing about committed data

commit(m, r) ⇾ com,    and r is uniform in 𝑅 (𝑟 ⇽ 𝑅),
then    com is statistically independent of m



Confidential Transactions



Confidential Tx     (CT)

Goal:  hide amounts in Bitcoin transactions.

⇒ businesses cannot use for supply chain payments

will not hide Tx fee



Confidential Tx:    how?

Bitcoin Tx today: Google: 30 ⇾ Alice: 1,    Google: 29

8 bytes

The plan: replace amounts by commitments to amounts

Google:  com1 ⇾ Alice: com2,    Google: com3

32 bytes
where   com1 = commit(30, r1),  com2 = commit(1, r2),  com3 = commit(29, r3) 



Now blockchain hides amounts

3bd6e25fqd

8c528ad9fa

ae23b452d8

187b6cf54a8

How much was transferred ???



The problem:  how will miners verify Tx?

Solution:   zkSNARK (special purpose, optimized for this problem)
• Google: (1) privately send  r2 to Alice

(2) construct a zkSNARK 𝜋 where statement = x = (com1, com2, com3)
witness = w = (m1, r1, m2, r2, m3, r3)

and circuit  𝐶(x,w)  outputs 0 if:
(i) comi = commit(mi, ri)  for i=1,2,3,
(ii) m1 = m2 + m3 + TxFees,   
(iii) m2 ≥ 0   and   m3 ≥ 0

Google:  com1 ⇾ Alice: com2,    Google: com3

com1 = commit(30, r1),   com2 = commit(1, r2),   com3 = commit(29, r3) 

CT arithmetic 
circuit



The problem:  how will miners verify Tx?

• Google: (1) privately send  r2 to Alice
(2) construct zkSNARK proof 𝜋 that Tx is valid
(3) append  𝜋 to Tx

proof 𝜋 ,    Google:  com1 ⇾ Alice: com2,    Google: com3Tx:

• Miners: accept  Tx  if proof 𝜋 is valid   (need fast verification)
⇒ learn Tx is valid,  but amounts are hidden

(need short proof!   ⇒ zkSNARK)



Zcash (simplified)



Zcash

Goal:  fully private payments  …  like cash, but across the Internet
challenge:   will governments allow this ???

Zcash blockchain supports two types of TXOs:

• transparent TXO    (as in Bitcoin)

• shielded   (anonymized)

a Tx can have both types of inputs, both types of outputs



Addresses and TXOs
H1, H2, H3:    cryptographic hash functions.

(1) shielded address:     random  sk ⇽ X,       pk = H1(sk)

(2)  shielded TXO  (note)  owned by address  pk:

- TXO owner has (from payer):     value v    and   r ⇽ R

- on blockchain:    coin = H2( (pk, v) ,  r) (commit to pk, v)

pk: addr. of owner,   v: value of coin,    r: random chosen by payer

sk needed to spend TXO 
for address pk



The blockchain

coin1

coin2

coin3

⋮

nf1
nf2

⋮

coins nullifiers transparent-TXOs

similar
to Bitcoin
UTXO set

just Merkle root … append only tree
(coins are never removed)

explicit list:
one entry per spent coin



Transactions:  an example

owner of  coin = H2( (pk, v) ,  r) (Tx input)
wants to send coin funds to: shielded  pk’, v’ 

transp.   pk’’, v’’

step 1: construct new coin:    coin’ = H2((pk’, v’) ,  r’)
by choosing random  r’ ⇽ R      (and sends v’, r’ to owner of pk’)

step 2: compute nullifier for spent coin   nf = H3(sk,                       )
nullifier  nf is used to “cancel” coin   (no double spends)

key point:  miners learn that some coin was spent, but not which one!

(v = v’ + v’’)

index of coin
in Merkle tree

(Tx output)



Transactions:  an example
step 3: construct a zkSNARK proof  𝜋 for

statement = x = (current Merkle root,   coin’,   nf,  v’’ )

witness = w = ( sk,   (v,  r),   (pk’, v’, r’),   Merkle proof for coin )
𝐶(x, w) outputs 0 if:      with  coin := H2( (pk=H1(sk), v), r)   check

(1) Merkle proof for coin is valid,

(2)  coin’ = H2((pk’, v’) ,  r’)
(3)  v = v’ + v’’   and   v’ ≥ 0  and  v’’ ≥ 0,

(4)  nf = H3(sk,  index-of-coin-in-Merkle-tree)

The Zcash
circuit

from
Merkle
proof



What is sent to miners

step 4: send   (coin’,  nf,  transparent-TXO,  proof 𝜋)   to miners,

send  (v’ , r’)  to  owner of pk’

step 5: miners verify
(i)  proof 𝜋 and    transparent-TXO
(ii)  verify that  nf is not in nullifier list  (prevent double spending)

if so, add  coin’ to Merkle tree,     add  nf to nullifier list,

add  transparent-TXO to UTXO set.



Summary

• Tx hides which coin was spent
⇒ coin is never removed from Merkle tree, 

but cannot be double spent thanks to nullifer

note:  prior to spending coin, only owner knows nf:      
nf = H3(sk,  )

• Tx hides address of coin’ owner

• Miners can verify Tx is valid, but learn nothing about Tx details.

index of coin
in Merkle tree



END  OF  LECTURE


