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Managing assets on a blockchain: key principles

* Universal verifiability of blockchain rules
= all data written to the blockchain is public; everyone can verify
= added benefit: interoperability between chains

* Assets are controlled by signature keys
= assets cannot be transferred without a valid signature
(of course, users can choose to custody their keys)



Naive reasoning:

universal verifiability = blockchain data is public

= all transactions data is public
otherwise, how we can verify Tx?

not quite ...

crypto magic = private Tx on a publicly verifiable blockchain



Public blockchain & universal verifiability
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 Proof m: zero-knowledge proof that (reveals nothing about Tx data)
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct
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Zero Knowledge Proof Systems




(1) arithmetic circuits

* Fixafinite field F ={0,..,p—1} forsome prime p>2.

* Arithmeticcircuit: C: F* = [F
* directed acyclic graph (DAG) where x1(x1 + 22+ 1(xz — 1)

* internal nodes are labeled +, —, or X
* inputs are labeled 1, x4, ..., x,

* defines an n-variate polynomial /G{
with an evaluation recipe B&

 |C| = # multiplication gatesin C




Boolean circuits as arithmetic circuits

Boolean circuits: circuits with AND, OR, NOT gates

Encoding a boolean circuit as an arithmetic circuit over IF,, :
* AND(x,y) encodedas x:-y
* OR(x,y) encodedas x+y—x-y &

* NOT(x) encodedas 1-—x )
X _y | OR(x,y)
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Interesting arithmetic circuits

* Cian(h, m): outputs Oif SHA256(m)=h, and #0 otherwise

Chash(hr m) = (h — SHAZSG(m)) ’ | Chashl = 20K gates

* Cgllpk, m), 0): output 0 ifois
a valid ECDSA signature of m under pk



(2) non-interactive proof systems (o)

Public arithmetic circuit:  C(x, w) — [,
public statement in IFg —J L— secret withess in IFg‘

Let x € IFg . Two standard goals for prover P:

(1) Soundness: convince Verifier that dw s.t. C(x,w) =0
(e.g., 3w suchthat [H(w) =x and 0 <w < 200 ] )

(2) Knowledge: convince Verifier that P “knows” w s.t. C(x,w) =0

(e.g., P knows aw such that H(w) = x)




The trivial proof system

Why can’t prover simply send w to verifier?
* Verifier checks if C(x,w) = 0 and accepts if so.

Problems with this:

(1) w might be secret: prover cannot reveal w to verifier
(2) w might be long: we want a “short” proof

(3) computing C(x, w) may be hard: want to minimize Verifier’s work



Non-interactive Proof Systems (corne)

Public arithmetic circuit:  C(x, w) — [,

public input in [ —J L— secret witness in [F}!

setup: S(C) — public parameters (S, S,)

Prover P(S,, X,W) Verifier V(S,, X, TT)
proof TT

output accept or reject




Non-interactive Proof Systems (corne)

A non-interactive proof system is a triple (S, P, V):
* S(C) — public parameters (S,,S,) for prover and verifier
* P(S,, x,w) — proof 7

* V(S, x, ) — accept or reject



proof systems: properties (informal)

Prover P(pp, X, W) Verifier V (pp, X, TT)
proof TT

Complete: vx,w: C(x,w) =0 = V(S, x, (Sp,lic,w
accept

Proof of knowledge: V accepts = P “knows” ws.t. C(x,w) =
0

Zero knowledge (optional): (x, ) “reveals nothing” about w




(b) Zero knowledge

(S, P, V) is zero knowledge if proof m “reveals nothing” about w

Formally: (S, P, V) is zero knowledge for a circuit C
if there is an efficient simulator Sim,
such that for all x € F; s.t. 3w:C(x,w) = 0 the distribution:

(Sp, Sv x, ™)  where (S,,S,) « S(C), m+ P(x, w)
is indistinguishable from the distribution:

(Sp, Sv x, ™)  where (S, S,, ) < Sim(x)

key point: Sim(x) simulates proof m without knowledge of w



(3) Succinct arguments: SNARKSs

Goal: P wants to show that it knows w s.t. C(x,w) =0

Succinct:

« Proof m should beshort [i.e., || = 0(log(|C]), 1) ]

-

e Verifying m should be fast [i.e., time(V)=0(|x|, log(|C])|, 2) ]

note: if SNARK is zero-knowledge, then called a zkSNARK



(3) Succinct arguments: SNARKSs

Goal: P wants to show that it knows w s.t. C(x,w) = 1

verifier cannotread C !! Instead,
Succinct: |V relies on setup(C) to pre-process (summarize) C'in S,

* Proof m should beshort [i.e., || = 0( ‘ 2 ]

« Verifying m should be fast [i.e., time(V) = 0(|x|, log(|C|)

Ml

-

note: if SNARK is zero-knowledge, then called a zkSNARK



An example

Prover says: lknow (xq,..,x,) € X suchthat H(xy ..,x,) =y

SNARK: size(rr) and VerifyTime(rr) should be O(logn) !

statement: y statement: y ]

witness: Xy, ..., X,

@ Proof ) Q accept or reject
(LTI TTTTTTTT]

Prover Verifier




An example

How is this possible ??7?

e ———

SNARK: size(r) and VerifyTime(rr) should be O(logn) !

statement: y statement: y ]

witness: Xy, ..., Xn

@ Proof 1T ) Q accept or reject
CITTTTTTTTTITT]

Prover Verifier




Types of pre-processing Setup

Recall setup for circuit C:  S(C) — public parameters (S, S,)

Types of setup:
trusted setup per circuit: S(C) uses data that must be kept secret

compromised trusted setup = can prove false statements
updatable universal trusted setup: (S, S,) can be updated by anyone

transparent: S() does not use secret data (no trusted setup)




Significant progress in recent years

Kilian’92, Micali’94: succinct transparent arguments from PCP

* impractical prover time

GGPR’13, Groth’16, ...: linear prover time, constant size proof o,
* trusted setup per circuit (setup alg. uses secret randomness)
« compromised setup = proofs of false statements

Sonic’19, Marlin’19, Plonk’19, ... : universal trusted setup

DARK’19, Halo’19, STARLK, ... : no trusted setup (transparent)



Types of SNARKS (partial list)

verifier trusted
time setup?

Groth’16
PLONK/MARLIN
Bulletproofs
STARK
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A typical SNARK software system

SNARK }hea"y }

backend
DSL SNARK > Proof =«
, friendly
program compller> format T
. | oA at .
Circom, X, witness
/oKrates, R':ICRS’
TurboPionk X > acc.ept/
1 verifier reject
| D (S, S,)




zkSNARK applications



Blockchain Applications

Scalability:
 SNARK Rollup (zkSNARK for privacy from pubilic)

Privacy: Private Tx on a public blockchain
e Confidential transactions
e Zcash

Compliance:
* Proving solvency in zero-knowledge

» Zero-knowledge taxes
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... but first: commitments

Cryptographic commitment: emulates an envelope

$ (K m §

Many applications: e.g., a DAPP for a sealed bid auction

* Every participant commits to its bid,

* Once all bids are in, everyone opens their commitment



Cryptographic Commitments

Syntax: a commitment scheme is two algorithms

—

[ . | f . . |
secret randomnessin R commitment string

e commit(msg, r) = com

» verify(msg, com, r) — accept or reject

anyone can verify that commitment was opened correctly




Commitments: security properties

* binding: Bob cannot produce two valid openings for com.

Formally: no efficient adversary can produce
com, (my, ry), (M, ry)

such that verify(my, com, r;) = verify(m,, com, r,) = accept

and m; #m,.

* hiding: com reveals nothing about committed data

commit(m, r) = com, andrisuniformin R (r « R),
then com is statistically independent of m



Confidential Transactions



Confidential Tx (CT)

Goal: hide amounts in Bitcoin transactions.

D c2561b292ed4878bb28478a8cafd1f99a01Ffaeb9c5a906715Fa595cac0e8d1d8 [F) mined Apr 10, 2017 12:38:00 AM

16k4365RzdeCPKGWJDNNBEKXj696MbChwx 0.53333328 BTC 4 1JgVBpw5TDMTR0ZXg9XpPDQRRHENbD5CSPA 0.01031593 BTC (U
1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmRED7 1.47877788 BTC 1AFLhD4EtG2uZmFxmfdXCyGUNqCqD5887u

¢ FEE:0.00179523BTC:>1— will not hide Tx fee ‘ 01031593 BTC ‘

= businesses cannot use for supply chain payments



Confidential Tx;: how?

Bitcoin Tx today: Google: 30 - Alice: 1, Google: 29
\ \

RN

8 bytes

The plan: replace amounts by commitments to amounts

Google: com; — Alice: com,, Google: com;
\ e

—~_

32 bytes

where com; = commit(30, r;), com, = commit(1, r,), com; = commit(29, r;)



Now blockchain hides amounts

D c2561b292ed4878bb28478a8cafd1f99a01faeb9c5a906715fa595cac0e8d1d8 [E) mined Apr 10, 2017 12:38:00 AM
16ka365RzdeCPKGWIDNNBEKs96Mbchwx  Sbd6e25fqd ¢ 1JgVBpw5TDMTR0ZXg9XpPDQRRHENbD5CsPA ae23b452d8
1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmRED7 8c528ad9fa 1AFLhD4EtG2uZmFxmFdXCyGUNGCqD5887u 187b6cf54a8

< FEE: 0.00179523 BTC > 1 CONFIRMATIONS ‘ 2.01031593 BTC ‘

How much was transferred ???



The problem: how will miners verify Tx?

Google: com; — Alice: com,, Google: com;

com, = commit(30, r;), com, = commit(1, r,), comz=commit(29, r;)

Solution:

zkSNARK  (special purpose, optimized for this problem)

 Google:

CT arithmetic
circuit

(1) privately send r, to Alice
(2) construct a zkSNARK 1 where|statement = x = (com,, com,, com;)

witness =w = (my, ry, My, r,, My, r3)

and circuit C(x,w) outputs O if:

—

(i) com,=commit(m, r;) fori=1,2,3,
(ii) m;=m,+ m; + TxFees,
(iii) my20 and m;20




The problem: how will miners verify Tx?

* Google: (1) privately send r, to Alice
(2) construct zkSNARK proof r that Tx is valid
\ (3) append ™ toTx  (need short proof! = zkSNARK)

)
Tx:| proofm, Google: com; — Alice:com,, Google: com,

 Miners: accept Tx if proof m is valid (need fast verification)
= learn Txis valid, but amounts are hidden



Zcash (simplified)



Goal: fully private payments ... like cash, but across the Internet

challenge: will governments allow this ???

Zcash blockchain supports two types of TXOs:
* transparent TXO (asin Bitcoin)
e shielded (anonymized)

a Tx can have both types of inputs, both types of outputs



Addresses and TXOs

H,, H,, H3:  cryptographic hash functions. sk needed to spend TXO
for address pk

(1) shielded address: random sk «+ X,  pk=H,(sk)

(2) shielded TXO (note) owned by address pk:

- TXO owner has (from payer): valuev and r <+« R

- on blockchain: | coin =H,( (pk, v), r) (commit to pk, v)

pk: addr. of owner, v:value of coin, r:random chosen by payer



The blockchain

coins nullifiers transparent-TXOs
coin, nf,
: similar
coin, nf, L.
to Bitcoin
Coing UTXO set
just Merkle root ... append only tree explicit list:

(coins are never removed)

one entry per spent coin



Transactions: an example

owner of coin = H,( (pk, v), r) (Tx input)
wants to send coin funds to: shielded pk’, v’
., ,,  (Txoutput)
(v=Vv' +Vv") transp. pk”, v

step 1: construct new coin: coin’ = H,((pk’, v’), r’)
by choosing random r’ < R  (and sends V’, r’ to owner of pk’)

. pe . ind f coi
step 2: compute nullifier for spent coin nf = H;(sk, i'nnMeeXrﬁector'ene )

nullifier nf is used to “cancel” coin (no double spends)

key point: miners learn that some coin was spent, but not which one!



Transactions: an example

step 3: construct a zZkSNARK proof m for

statement = x = (current Merkle root, coin’, nf, v"’)

witness=w =(sk, (v, r), (pk, Vv’ r’), Merkle proof for coin )

C(x, w) outputs 0 if:  with coin := H,( (pk=H4(sk), v), r)
" (1) Merkle proof for coin is valid,

The Zcash | (2) coin’ = H,((pk’, v'), r’)

circuit (3) v=Vv'+Vv” and v’ >0 and v’ 20, /

_(4) nf =H;(sk, index-of-coin-in-Merkle-tree)

check

from
Merkle
proof




What is sent to miners

step 4: send (coin’, nf, transparent-TXO, proof m) to miners,

send (v, r’) to owner of pk’

step 5: miners verify
(i) proof m and transparent-TXO
(ii) verify that nf is not in nullifier list (prevent double spending)

if so, add coin’ to Merkle tree, add nf to nullifier list,

add transparent-TXO to UTXO set.



* Tx hides which coin was spent

= coin is never removed from Merkle tree,
but cannot be double spent thanks to nullifer

note: prior to spending coin, only owner knows nf:
nf=H (Sk index of coin )
= M3

7 in Merkle tree

e Tx hides address of coin’ owner

* Miners can verify Tx is valid, but learn nothing about Tx details.



END OF LECTURE



