.. HYPERLEDGER

¥ FABRIC

Principle Foundations of Hyperledger Fabric

Marko Vukoli¢, IBM Research - Zurich

UC Davis
ECS 189F Introduction to Distributed Ledger

Invited Lecture
November 3, 2020

Hyperledger: A Linux Foundation project

« Hyperledger is a collaborative effort
created to advance cross-industry
blockchain technologies for business

 Founded February 2016 and has since
gathered significant cross-industry
momentum

« IBM Blockchain Platform is underpinned
by technology from the Hyperledger
project (in particular, Fabric)

« Open source
Open standards
Open governance model

Source: https://www.hyperledger.org/members
Updated: 24 September 2020

IBM Blockchain

Premier
accenture AIRBUS RENEE
© consensys paimLer DTCC FUTIDTSU

HITACHI T
Inspire the Next =

NEC

E:é_-_fi intel JPMorgan

Associate

¢ rmitin =
LI RSCl ~ g

N GieiTaL
@ s mcisne C_A[_CT v BRI o5A
A
DIF {‘ii‘\’ g v

General

v @ aetna o *

e .
", PREINSIGHT
Bai®m® "G0NY

mu_‘jﬁ -' nBTP P moccus @ moorone BLOCWATCH

Xﬂﬂiw ATOMYZE alroveton

cmeanens (@ EH A @China C.‘;rculor car CLS
CME Grou ;‘f"m @ comizant comouent 43 creativenill. @ e

» P Cox
0=

qlt DLT ... €785 “emurco ¢ estesty ©

TL'G Qdigicert & oighalas

!_'e'xperion FedEx. @rowchan \,‘\ Rt S,

oooooooo
su mspursn 4B &
HUAWE! [geed i o

e 1OVIGES GipCian

o e

MKIYPC & it 7 cosgosons @LGCNS {J Limechain
Mominn: O3 e B Microsoft Mg e 8 Mindtree MON /X

Mo @)
Go I:l e (GONIGE,

NTTDETE) Optherivm

General

orAacLe MPAwwoun
poir
Omﬂgc pw-ct t‘ QUANT rSO @ RedHat .:EQG.%V

e
-{rlpple @ P @ SBERBANK

Postaisiane F porecisely
t ra

SDX secure@ -z EQ SHE ...
vs splunk> & stteram @ Q S symbridge
SoRAMITE, swisscom

Ftangem Tt Tbia D vances T

Cou

wsowe A YISA s

hub® vmware

: \ #
\Ionecmfm Walmart @ watrode w.p,of? \\\/// £ XILINX
NQOQ Frall @ evens

Academia Associate

[l
[
U
||||||||

|
iy
.

https://www.hyperledger.org/members

Hyperledger projects -

" HYPERLEDGER

—
Distri. ited Ledgers
HYPERLEDGER /[\ HYPERLEDGER ~:, HYPERLEDGER .« HYPERLEDGER HYPERLEDGER M HYPERLEDGER
¢
BESU BURROWI “¥¥ FABRIC &8¢ INDY IROHA 4@ SAWTOOTH
Java-based Permissionable smart Enterprise-grade DLT Decentralized identity Mobile application focus Permissioned & permissionless

Ethereum client contract machine (EVM) with privacy support support; EVM transaction family

Libraries

Domain-Specific

- HYPERLEDGER

GRID

HYPERLEDGER I HYPERLEDGER

"ARIES gmm QUILT

HYPERLEDGER +* HYPERLEDGER
A TRANSACT SR URSA

@ HYPERLEDGER .‘t;,a HYPERLEDGER + HYPERLEDGER
' AVALON *%g#” CACTUS CALIPER
HYPERLEDGER ~> <> HYPERLEDGER

s

CELLO EXPLORER HYPERLEDGER

LABS

IBM Blockchain

What is Hyperledger Fabric?

2NP GLOBAL ENTERPRISE E .
xecutive Summa
BLOCKCHAIN ry
B_ENCH MAR_K!NG STUDY o Hyperledger Fabric appears to be the platform of choice across all industries:
Michel Rauchs, Apolline Blandin, Keith Bear, Stephen McKeon - . - .
2019 48% of covered projects that are used in production have chosen Hyperledger Fabric as

the core protocol framework underlying the network, followed by R3’s Corda platform
(15%) and Coin Sciences’ MultiChain framework (10%).

Cambridge
Centre
for Alternative

B H UNIVERSITY OF
% CAMBRIDGE
Judge Business School

https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2019-ccaf-second-global-enterprise-blockchain-report.pdf ©2020 [BM Corporation

<>.. HYPERLEDGER

%Y FABRIC

v hyperiedger.org

.’ HYPERLEDGER

~ HYPERLEDGER

&% FABRIC

GET THE CODE BUILD YOUR FIRST NETWORK * | -~ &7
v g ’

Type: DLT, Smart Contract Engine
Status: Active

Hyperledger Fabricis @
LR ‘o e

IBM Blockchain

>
8
o
T
°
°
w

HyperledgegFabric Explainer

v ation @ ne O
blockchai amework | plementa Ol
D k t [‘ f

a Distributed Operating System I
for Permissioned Blockchains

Foundation for developing general-purpose blockchain applications in
general-purpose programming languages

Emphasis on consensus modularity, confidentiality, resiliency, scalability,
smart-contract programmability.

V1.0 released June 2017

V1.4 LTS released January 2019

V2.0 was released January 2020
V2.2 LTS released July 2020
Apache 2.0 license

159 developers from 27 organizations

IBM is one of the many contributing organizations

https://github.com/hyperledger/fabric

Hyperledger Fabric powers IBM Blockchain

IBM Blockchain Learn v Platform Services Solutions v Industries v Ecosystem

IBM Blockchain Platform:
the next generation of blockchain for
business

Proven, flexible and built to run on any cloud. Deploy the leading Hyperledger
Fabric platform in the environment that’s right for your enterprise.

The IBM Blockchain Platform is reshaping industries

The race to reinvent the world is on. What disruption will you create?

Food supply Media and advertising Trade finance

IBM Food Trust™ is the only blockchain Online advertising fraud costs companies Thirteen European banks have collaborated
network of its kind connecting growers billions of dollars annually. Learn how on we.trade, a blockchain network that’s
processors, distributors, and retailers Mediaocean is revolutionizing the media transforming trade finance — and even
through a permissioned, permanent, and and advertising industry with the IBM trade itself — for small- and medium-sized
shared record of food system data. Blockchain Platform and IBM Garage. buyers and sellers.

© 2020 IBM Corporation

Introducing IBM Blockchain Platform

Build and operate Hyperledger Fabric networks

~ "~ . HYPERLEDGER

¥ FABRIC

Container virtualization & orchestration

Developer ||, , Operator
IBM '
tools ubernetes @ O RANF(;I — tools
Service kubernetes
-
N on
< G A parg| D
IBM Cloud Google Cloud
Multi-cloud deployment
\J 4
Advanced tooling Open technology Deploy anywhere
Create & manage smart contracts, Hyperledger Fabric, Comprehensive cloud &

applications & networks Containers, Kubernetes on-premises options

IBM Blockchain

[l
A
U

||||||
- lI

i
.

IBM is making blockchain real for business with

active networks spanning
most industries

&% UBS
Bank

Guarantees

2(er | ANZO | COLS

O

AlG

Trade

Finance

<H& FARMER CONNECT

oo f _
Driscolls % 1Boksa Comercio

-
> b d
ae fods | Travelport

Carrefour Albertsons

Government

IBM Blockchain

we.trade

more trust. more trade.

=2 WORLDCOM
“" FINANCE

SUIASNENS LNy 7 “\%a
KASIKORNBANK RS GREE @ l’t'rnmlzll’..’mk‘, \ i,

—

mandiri

Danamon -

= plasticbank

Clearing &

Settlement

N

i2%| povA |ONE
v

TRUST
YOUR
SUPPLIER
CHAINYARD

§5 BN I Desjardins

RBC

(R sank sri

Identity
CIBC

Soft Bag}i

—

§ VINTURAS

Unlisted

Securities
s SBIiE%

Provenance

mediaocean 0:0 MERCK

o
SUPPLIER m
MARSK
Healthcare
(A AMiPasa
TRADE , , ,
LENS e -
CMAEM M Anthem. aetna

= AAIS

& MARSH
MINEHUB

vertray:

2TenneT

Distributed
Energy

Im
s

Blockchain Transparent Supply: IBM Food Trust -

Problem % IBM Food Trust" - Trace

I . - I

* Product information is siloed across the supply chain

5 2 1 3 15
» Managing inventory (shelf-life, expiry date, product rotations, etc) is a challenge Gt o

Fresh Celery 50 stalks v |Br0ccoli Carmots& v

due to lack of pertinent information integrated with products iy

Fresh Inc
Broccoli 50 pes v Fresh Celery 50 stalks v
e Fresh Celery 50 stalks v .

1 Warehouse And Or

Depot

Farm Warehouse And Or Manufacturer
epot

* Product recalls often take weeks, and often performed manually

Broccoli, Carrots & v
Celery Crudités pack
1 Manufacturer of Goods

Broccoli, Ca

, Carrots & W
Celery Crudités pack
Distributor

Broccoli, Carrots &
Celery Crudités pack
15 Store

v

1 Warehouse And Or
Depot

Manufacturer of Goods

> Broccoli 50 pes v
Broccoli 60 pcs v 1 Manufacturer of Goods

- Brocceoli 50 pcs. v
1 Farm
O u I o n 1 Warehouse And Or
Depot
Fresh

Broccoli 60 pes v

Broccoli 60 pes v
1 Manufacturer of Goods

» Food products , including their transformation, are linked across the supply chain
using GS1 data standards -

Depot

» Suppliers can link or embed useful information into products Chicken / Carrefour

» Shoppers can trace quality and origin of products from production through
distribution by a QR code scan

Benefits & Implications

* Near-instant traceback of products to their origin allow for building
consumer trust in products, surgical recalls, and distribution maps

* Inventory optimization using accurate inventory positions across the supply chain with product information
» With the full trace data, there are opportunities for new analytics and insights for supply chain optimization

IBM Blockchain

(Animated) Demo: IBM Food Trust

< ift_Mousline ¥ ift_Mousline

o ®a
Latransparence, o

ca se cultive ! $
S

Découvrez la tracabilité

de votre produit Informations

sur votre produit

- |
e
Renseigner votre
numéro de lot
9 078 0836A 2 Mousline Nature 5209
]
A consommer de préférence avant fin:

Trouver le numéro de lot Date de production: (Ve kyFLe i)

" 1
IBM Blockchain

Further examples by (selected) industry Il
|
|

* Trade Finance » Asset » Supply chain » Claims » Supply chain

Registration processing

» Cross currency Loyalty programs * Product parts

payments « Citizen Identity e * Risk provenance A e
» Mortgages » Medical records sharing (supplier + Asset usage tracking
« Letters of Credit + Medicine supply — retailer) history
chain Claims file

IBM Blockchain

®

... and COVID-19 related use cases: IBM Digital HealthPass —|—

[MusT READ: Quantum computers are coming. Get ready for them to change everything po Wered by
' o o
IBM's Watson Health launches IBM Digital <*.. HYPERLEDGER
Health Pass app RG-S
The app is under control of the individual and uses blockchain to verify everything from health data to COVID-19 test o N “ FA B R I C

results.

IBM Digital HealthPass balances the need to present health status for access with privacy

Covid-19 test and overall health status is only accessible on personal devices of Users

Users devices hold Health Passports and, therein, Health Credentials issued by approved Issuers
Information about approved Issuers (their public keys) registered on the blockchain

Users present Health Credentials (in the form of a QR code) to Verifiers to obtain physical access
Verifiers can apply the appropriate policy to Users based on whether or not they are equipped with a
valid and authentic Health Credentials, accessing information about Issuers stored on the blockchain
* No Health Certificate or Pll is ever stored on the blockchain (GDRP, HIPAA compliance)

IBM Blockchain

https://www.ibm.com/products/digital-health-pass

~ "'« HYPERLEDGER

¥ EABRIC

The 2018 Eurosys paper described the revolutionary v1 architecture

EURO/SYS'18
nitps://dl.acm.org/doi/10.1145/3190508.3190538 ~1300 citations since April 2018, university courses...

Fabric v1 enabled, for the first time:

= Ablockchain system that allows blockchain applications (smart contracts) to be written in
general-purpose programming languages (e.g., Go, Java) without being susceptible to security
vulnerabilities and code nondeterminism

= Addressed system-level challenges related to eliminating native cryptocurrencies from blockchains
= Enabled modular distributed consensus and network membership services
= |ntroduced, to this end, a novel Execute — Order — Validate architecture for blockchains

= Excellent performance for a variety of blockchain applications

© 2020 IBM Corporation

https://dl.acm.org/doi/10.1145/3190508.3190538

What is a Blockchain?

15

A chain (sequence, typically a hash chain) of blocks of transactions
- Each block consists of a list of transactions
- Blockchain establishes total order of blocks (and hence, transactions)

#1

#0
Genesis
Consensus block
protocol
ensures ledger
replicas are
identical*

#235

Ledger

A

#236 datastructure

Node E

Ledger

Network of
untrusted nodes

© 2020 IBM Corporation

Blokchain transactions and distributed applications

 Bitcoin transactions

- simple virtual cryptocurrency transfers
- transfer BTC from account to account

 Transactions do not have to be simple nor related to cryptocurrency

- Distributed applications
- smart contracts (Ethereum) or chaincodes (Hyperledger Fabric)

A smart contract is an event driven program, with state,
which runs on a replicated, shared ledger [Swanson2015]

“Smart contract” = (replicated) state machine

16 © 2020 IBM Corporation

Are Blockchains the same as SMR?

17

SMR = State-Machine Replication [Lamport 78, countless follow-up papers]

Well, not really...

The main difference

SMR approach
single trusted application

Blockchain smart-contracts

Multiple applications

Not (necessarily) trusted!
Developed by third party application developers

© 2020 IBM Corporation

Blockchain evolution

A hard-coded cryptocurrency application

Limited stack-based scripting language

Native cryptocurrency (BTC) :
Resource-intensive Proof-of-Work consensus Blockchain 1.0
Permissionless blockchain system

2009

bitcoin

General-purpose blockchain

Distributed applications (smart contracts)

Domain-specific language (Solidity) _
Native cryptocurrency (ETH) Blockchain 2.0
Resource-intensive Proof-of-Work consensus

Permissionless blockchain system

2014

ethereum

» (General purpose blockchain

2017 - Distributed applications (chaincodes)
- Different general-purpose languages Blockchain 3.0
<>.. HYPERLEDGER (e.g., golang, Java, Node) :

No native cryptocurrency

Modular/pluggable consensus

Permissioned blockchain system (geared towards business applications)
Designed for multiple instances/deployments

18 © 2020 IBM Corporation

<% FABRIC

Blockchain evolution

2009

bitcoin

19

A hard-coded cryptocurrency application
Limited stack-based scripting language
Native cryptocurrency (BTC)
Resource-intensive Proof-of-Work consensus
Permissionless blockchain system

Blockchain 1.0

© 2020 IBM Corporation

[
el
i
""HI"
]

How Bitcoin works (in one slide)

20

Step 1: PoW block “mining”

. |#234

Step 2: Gossip block #237 across the networ

Step 3: Validation (at every miner)

#235

A

#236

Transactions
(payload)

A =hash of block #236
B = Root hash of

A

Merkle tree of tx
hashes
C = nonce

Block #237

Miner tasks
» Validate transactions in the block
* Find nonce such that

h: hash of Block #237

h = SHA256(A||B||C) < DIFFICULTY

I
/

 Validating transactions in the block, sequentially

* Verify hash of Block #237 < DIFFICULTY

(payload)

Transactions

#234«———#235

A

B = Root hash of

#236 « Merkle tree of tx

hashes

C = nonce

A =hash of block #236

Block #237

Obitcoin

© 2020 IBM Corporation

Bitcoin energy consumption and performance

21

https://digiconomist.net/bitcoin-enerqgy-consumption

77 TWh/year - 8~9 GW of power

More than Switzerland, 0.35% of world electricity consumption
741 KWh per transaction!

1 transaction can power 25 average US households for a day

7 transactions per second peak theoretical throughput

Latency about 1 hour (1 block on average every 10 minutes, 6 block confirmation)

©bitcoin

© 2020 IBM Corporation

https://digiconomist.net/bitcoin-energy-consumption

Blockchain evolution

2009

bitcoin

2014
\A ethereum

22

A hard-coded cryptocurrency application
Limited stack-based scripting language
Native cryptocurrency (BTC)
Resource-intensive Proof-of-Work consensus
Permissionless blockchain system

General-purpose blockchain

Distributed applications (smart contracts)
Domain-specific language (Solidity)

Native cryptocurrency (ETH)
Resource-intensive Proof-of-Work consensus
Permissionless blockchain system

Blockchain 1.0

Blockchain 2.0

© 2020 IBM Corporation

Ethereum

How-B#eet works (in one slide)
Pre-execute
« Step 1: PoW block “mining” Minertasks

\alidate.transactions in the block

= . * Find nonce such that
ra”S?Ct'O”S h: hash of Block #237
(payload) h = SHA256(A||B||C) < DIFFICULTY

A =hash of block #236 2

B = Root hash of
. |#234 < #235 #236 Merkle tree of tx

hashes
C = nonce

A

A

Block #237

« Step 2: Gossip block #237 across the networ

Execution
« Step 3:-Validation (at every miner)
Executing » Malidating transactions in the block, sequentially

 Verify hash of Block #237 < DIFFICULTY | [Transactions
(payload)

A =hash of block #236

B = Root hash of

#236 < Merkle tree of tx
hashes

C = nonce

#234«—{#235

A

23 Block #237

T\

2}

ethereum

© 2020 IBM Corporation

Ethereum energy consumption and performance

https://digiconomist.net/ethereum-enerqgy-consumption

11 TWh/year - 14% of Bitcoin

= 1 transaction can power 1 average US household for a day

About 15 transactions per second possible peak throughput

= Latency about 7-8 minutes (1 block on average every 15 seconds, 30+ block confirmations)

24

Qeﬂﬁereum

© 2020 IBM Corporation

https://digiconomist.net/bitcoin-energy-consumption

Permissioned Blockchains before Fabric v1 (also Fabric v0.5 and v0.6)

Block
#237

Tx1|Tx3
Tx4

Node A (leader)

Node B
% % Node C

Node D

example: #27
PBFT [Castro/Liskov02] - #234 #235 #236 Tx3
Tx4

A

A

Execute tx

25 © 2020 IBM Corporation

Blockchain SOTA (prior to Fabric v1) follows order-execute architecture

Execute

= Order transactions using Proof-of-Work (PoW) or Byzantine Fault Tolerant (BFT) consensus

= Execute transactions at each node

= Order/execute architecture is found in many SMR systems

— Active state machine replication [Schneider90]
— Paxos and co., Raft
— Vast majority of BFT

26 © 2020 IBM Corporation

Blockchain evolution

A hard-coded cryptocurrency application

Limited stack-based scripting language

Native cryptocurrency (BTC) :
Resource-intensive Proof-of-Work consensus Blockchain 1.0
Permissionless blockchain system

2009

bitcoin

General-purpose blockchain

Distributed applications (smart contracts)

Domain-specific language (Solidity) _
Native cryptocurrency (ETH) Blockchain 2.0
Resource-intensive Proof-of-Work consensus

Permissionless blockchain system

2014

ethereum

» (General purpose blockchain

2017 - Distributed applications (chaincodes)
- Different general-purpose languages Blockchain 3.0
<>.. HYPERLEDGER (e.g., golang, Java, Node) :

No native cryptocurrency

Modular/pluggable consensus

Permissioned blockchain system (geared towards business applications)
Designed for multiple instances/deployments

27 © 2020 IBM Corporation

<% FABRIC

Hyperledger Fabric — key requirements

28

No native cryptocurrency @
Ability to code distributed apps in general-purpose languages @
Modular/pluggable consensus @

Satisfying these requirements required
a complete overhaul of the (permissioned) blockchain design!

end result

Hyperledger Fabric v1

Eurosys 2018 paper
https://dl.acm.org/doi/10.1145/3190508.3190538

© 2020 IBM Corporation

https://dl.acm.org/doi/10.1145/3190508.3190538

29

ORDER - EXECUTE architecture issues

Sequential execution of smart contracts
— long execution latency blocks other smart contracts, hampers performance
— DoS smart contracts (e.g., infinite loops)

— How Blockchain 2.0 copes with it:
» Gas (paying for every step of computation)) Q
» Tied to a cryptocurrency

Non-determinism
— Smart-contracts must be deterministic (otherwise — state forks)
— How Blockchain 2.0 copes with it:

« Enforcing determinism: Solidity DSL, Ethereum VM Q
« Cannot code smart-contracts in developers’ favorite general-purpose language (Java, golang, etc)

Confidentiality of execution: all nodes execute all smart contracts
Inflexible consensus: Consensus protocols are hard-coded

Inflexible trust models: consensus trust model becomes also application trust model

© 2020 IBM Corporation

Fabric v1 architecture in one slide

30

Existing blockchains’ architecture

—)

Order Execute

input tx tx against smart contracts

Hyperledger Fabric v1 architecture

EWEE)

{ vV

— > e e
VAV N _
Execute Order Validate
Tx against smart-contracts Versioned state Versioned

Create versioned state updates updates/endorsements YPdates&endorsements

Collect endorsements Stateless ordering Flag invalid and conflicting tx

Persist valid tx
[P

Applicationlconsists of two components:
1) Chaincode (execution code)
2) Endorsement policy (validation code)

© 2020 IBM Corporation

31

Node roles in Fabric

= Fabric splits the roles of the nodes

= Peers

— Hold the application state
— Execute and validate transactions

= Ordering service
— Composed of ordering service nodes (OSNs or orderers)
— Build the blockchain data structure
— Impose total order across transactions, grouped in blocks

= Clients
— Submit transactions to the system

© 2020 IBM Corporation

Hyperledger Fabric v1 Transaction flow T e somaniios

(ordering service)
@ <PROPOSE, clientID, chaincodelD, txPayload, timestamp, clientSig> @ BROADCAST (blob)

(2) <TX-ENDORSED, peerlD, txID, chaincodelD(Teadset, writeset> (4) DELIVER(segno,prevhash,block)

T—_0 &

docker levelps

Collect endorsement // Simulate tx execution
(“sufficient” no. of { @ Produce r/w sets

TX-ENDORSED Msgs) |« Sign TX-ENDORSED

broadcast(endorsement) w»

R 4///’

(SNsuasu02) 921AI9S SUlIBPIQ

endorsing endorsing endorsing || |

client (C) peer (EP1) peer (EP2) peer (EP3)

orderers

© 2020 IBM Corporation

Hyperledger Fabric v1 Transaction flow T e somaniios

(ordering service)
@ <PROPOSE, clientID, chaincodelD, txPayload, timestamp, clientSig> @ BROADCAST (blob)

(2) <TX-ENDORSED, peerlD, txID, chaincodelD, readset, writeset> (4) DELIVER(segno,prevhash,block)

T—_0 &

docker levelps

Co st endorsement // Simulate tx execution
(“sufficient” no. of { @ Produce r/w sets

TX-ENDORSED Msgs) |« Sign TX-ENDORSED

broadcast(endorsement) “»

R M

(SNsuasu02) 921AI9S SUlIBPIQ

endorsing endorsing endorsing ||| (committing) (committing)

client(C) peer (EP1) peer (EP2) peer (EP3) peer (CP4) peer (CP5)

orderers

© 2020 IBM Corporation

Hyperledger Fabric v1 Transaction flow T e somaniios

(ordering service)
@ <PROPOSE, clientID, chaincodelD, txPayload, timestamp, clientSig> @ BROADCAST (blob)

(2) <TX-ENDORSED, peerlD, txID, chaincodelD, readset, writeset> (4) DELIVER(segno,prevhash,block)

T—_0 &

docker levelps

Co st endorsement // Simulate tx execution
(“sufficient” no. of { @ Produce r/w sets

TX-ENDORSED Msgs) |« Sign TX-ENDORSED

broadcast(endorsement) “»

R M

(SNsuasu02) 921AI9S SUlIBPIQ

endorsing endorsing endorsing ||| (committing) (committing)

client(C) peer (EP1) peer (EP2) peer (EP3) peer (CP4) peer (CP5)

orderers

© 2020 IBM Corporation

Hyperledger Fabric v1 Transaction flow T emantes

(ordering service)

@ <PROPOSE, clientID, chaincodelD, txPayload, timestamp, clientSig> @ BROADCAST (blob)
@ <TX-ENDORSED, peerlD, txID, chaincodelD, readset, writeset> @ DELIVER(segno,prevhash,block)
| | BN a o
@ =
\ o
DB Q
/ i =
Collect endorsement / tion |04
(“sufficient” no. of { @ Execute 8
TX-ENDORSED Msgs) Lo = £D 3
Sufficiently enough 5
to satisfy N 8
Endorsement <
Policy (EP) @ e @
. rder S~
Y— / - \ N
Validate(endorsement,| S .
End. Policy) | & |Valig \
Validate(readset vers) | <L |,
Commit tx Com|
| | ~ local FS Validate N
dlient (C) endorsing endorsing endorsing + | | | (committing) (committing)

peer (EP1) peer (EP2) peer (EP3) peer (CP4) peer (CP5)

@ orderers

levelps

© 2020 IBM Corporation

Challenge #1: Non-Determinism

= Goals
— Enabling chaincodes in golang, Java, ... (can be non-deterministic)
— While preventing state-forks due to non-determinism

= Hyperledger Fabric v1 approach
— Execute chaincode before consensus
— Non-deterministic chaincode execution is tolerated
— Use consensus to agree on propagation of versioned state-updates

EXECUTE->ORDER->VALIDATE:
non-deterministic tx are not guaranteed to be live
(e.g., cannot collect endorsement due to non-determinism)
ORDER->EXECUTE

non-deterministic tx are not guaranteed to be safe (forks can occur)

36

© 2020 IBM Corporation

Challenge #2: Sequential execution of smart-contracts

= Goals
— Prevent slow smart-contracts from delaying the system
— Address DoS without native cryptocurrency

= Hyperledger Fabric v1 approach
— Partition execution of smart-contracts
— Only a subset of peers are endorsers for a given smart-contract (chaincode)

= DoS, resource exhaustion?
— Fabric v1 transaction flow is resilient to non-determinism
— Endorsers can apply local policies (non-deterministically) to decide when to abandon the execution
of a smart-contract
— No need for gas/cryptocurrency!

37 © 2020 IBM Corporation

Challenge #3: Confidentiality of execution

= Goal
— Not all nodes should execute all smart contracts

= Hyperledger Fabric v1 approach
— Partition execution of smart-contracts
— Only a subset of peers are endorsers for a given smart-contract (chaincode)

= Later extended to Private chaincode execution leveraging Intel SGX
— Fabric Private Chaincode, SRDS 2019, hitps://arxiv.org/abs/1805.08541 (IBM Research + Intel collaboration)

— Available in v1.4

= Confidentiality of data (versioned updates) was later added for certain token applications
— Support for Zero Knowledge Asset Transfer (ZKAT) in Fabric v2-alpha
— https://eprint.iacr.org/2019/1058

38 © 2020 IBM Corporation

https://arxiv.org/abs/1805.08541
https://eprint.iacr.org/2019/1058

Challenge #4: Consensus modularity/pluggability

= Goal
— No-one-size-fits-all consensus - Consensus protocol must be modular and pluggable

= Hyperledger Fabric v1 approach

— Fully pluggable consensus (was present in order-execute v0.6 design as well)

= HLF v1 consensus (ordering service) implementations
— Centralized! (SOLO, mostly for development and testing)
— Crash FT (KAFKA, thin wrapper around Kafka/Zookeeper)
— Both deprecated since v2.0
— Crash FT (RAFT, wrapper around etcd/raft) since v1.4.1

= BFT Consensus
— BFT-SMaRt Java library (Research collaboration with University of Lisbon) as PoC
» Code: https://github.com/jcs47/hyperledger-bftsmart
« Paper: htips://arxiv.org/abs/1709.06921, later appeared in DSN 2018
— Ported also to Go in 2019: htips://github.com/SmartBF T-Go/

— «Native» BFT implementation targeting about 100 orderers — in progress, expected in 2021
« Based on Mir-BFT, https://arxiv.org/abs/1906.05552

39 © 2020 IBM Corporation

https://github.com/jcs47/hyperledger-bftsmart
https://arxiv.org/abs/1709.06921
https://github.com/SmartBFT-Go/
https://arxiv.org/abs/1906.05552

Mir-BF T: Scalable and High-Throughput BFT consensus for Blockchains

(paper is available at https://arxiv.org/pdf/1906.05552.pdf)

THROUGHPUT: WAN, 1GBPS NETWORK
FABRIC-SIZED TRANSACTIONS (3500 BYTES)

@ \ir-BF T Single-leader BFT (PBFT) e= e Fabric validation bottleneck
Scalabilit
o
|_
— 35000
@ & © g 20
gf @ [:
Sustainability 2 25000
Consensus Finali N
13 @ @ @ ; 20000
o 15000
Performance @ @ =
% 10000
Z
. . . . < 5000 o oy on - e e er e s e» s @ @ e - - -
Main Design Principles o .
0 20 40 60 80 100

= Multiple leaders
— Multiple leaders propose requests in parallel (vs PBFT single leader) Qther features

NUMBER OF NODES

*» Prevents duplication that may arise with multiple leaders = WAN latencies at the order of 1-2s (finality)
— Request hashspace divided in buckets and sharded across a set of
leaders (this deals with request duplication) = High performance in clusters (LAN) as well
— Bucket assignment to leaders periodically rotates (this eliminates
censoring attacks) = Robust to performance attacks
= Incrementally built on proven protocol (PBFT) = Configurable as crash-fault tolerant (replacing Raft)

40 — Critical for easier reasoning about correctness ©2020 IBM Corporation

https://arxiv.org/pdf/1906.05552.pdf

Challenge #5: Distributed applications with configurable trust assumptions

41

Execution code (a.k.a. chaincode)

— Execute untrusted chaincode before consensus
— Non-deterministic chaincode tolerated

— EXECUTE->ORDER->VALIDATE: non-deterministic tx are not guaranteed to be live
— ORDER->EXECUTE: non-deterministic tx are not guaranteed to be safe (forks)

Validation code (a.k.a. endorsement policy)
— Deterministic(!), executed post-consensus

— Deployed by a set of administrators (e.g., majority of nodes on the network)
— Instantiated by chaincode
— Examples

K out of N chaincode endorsers need to endorse a tx
Alice OR (Bob AND Charlie) need to endorse a tx

Execute

v

Validate

Fabcoin — Bitcoin-inspired UTXO authority-minted cryptocurrency for Fabric

Customized validation code

Fabric mixes
passive and active replication
into hybrid replication

© 2020 IBM Corporation

[
(AL
il
""HI"
)

Fabric performance (Fabcoin)

4500 |

I I I
spend-throughput-peer —— 1 340
N spend-validation-throughput —¢— 1 320
4000 |- \ spend-VSCC-latency —[3
4 300
\ spend-rwcheck-latency — (3
3500 | A spend-ledger-latency — /A 1 280
4 260
3000 12407
| e | E
8_ 4 220 =
Faandl >
4 2500 - 4 200 -
a {180 2
- 8
12000 - 1 160 7
o 1140 &
= o
1500 - 1120
e
4 100
~
= = 1 80
1000 A __________________ ~ - é __________ 6
Sz --—- == 1 60
@--------- G CIIZoIIIs ==z
- Tt - o 4 40
500 3
120
0 1 1 1 1 1 1 1 1 0

4 8 12 16 20 24 2 32
number of vCPUs

42 © 2020 IBM Corporation

Fabric performance (Fabcoin)

' LT -] T
v r
[7
1)
0.8 !I
|7
5 0.6 — ll
3 |
2 041
32vCPU-mint-e2e
0.2 32vCPU-spend-e2e — —
16vCPU-mint-e2e -----
16vCPU-spend-e2e — - —
0 L 1 | | | ,

0 100 200 300 400 500 600 700 800 900
Latency [ms]

43 © 2020 IBM Corporation

[Joml]
(A
II| 1
il
[l

Fabric performance (Fabcoin)

gésoo - .
gsooo - >.< .
S2500 o |
(@]

=

2000 .
)

()

21500 :
(w)]

£

)]

51000 - mint-throughput-peer-LAN —— -
g spend-throughput-peer-LAN —%—
L S00r mint-throughput-peer-2DC —%— 1
2 . | | | | spend-throughput-peer-2DC —5—

0 10 20 30 40 50 60 70 80 90 100 110
number of peers

44 © 2020 IBM Corporation

Thank Youl!

