
ResilientDB Visualization Framework

Yu-Hsuan Lin, Yi-Hsiang Chiu, Tzu-Hsin Yang, Pin-Ting Liu, Yu-Cheng Hwang
Department of Computer Science

University of California, Davis
{zyhlin,yihchiu,zixyang,ptliu,timhwang}@ucdavis.edu

December 11, 2021

Abstract—Nowadays, Cryptocurrency, Bitcoins,
Ethereum, Dogecoin, and so on, become more and more
popular as investments and transactions. The blockchain
technology behind these cryptocurrencies has also entered
people’s field of sight. Nonetheless, the mechanisms
of blockchain are complex and confusing because it
is difficult to look into the details of the mechanisms.
Therefore, visualizing the view of blockchain is critical
work. It can assist people to grab more ideas behind the
blockchain. Also, blockchain researchers can make use of
visualization systems to monitor the status of blockchain.
As we know, blockchain is a distributed system, and each
block works on a different machine independently. In
this project, our goal is to visualize the status of those
individual machines. We will use ResilientDB as the
example of blockchain, and monitor the situation of each
machine (replica), and then build a web user interface
(UI) to show the information such as CPU utilization,
throughput, and so on during a transaction.

I. INTRODUCTION

In order to adopt blockchain technology in a
wider range of fields, we need to explore and ana-
lyze transaction data to better understand user be-
haviors and mechanisms in the blockchain system.
Therefore, visualization tools can support humans in
analyzing transactions and deriving hypotheses and
models used in the blockchain.

There are many previous work developing visu-
alization systems. [1]–[6]. However, most of them
only provide descriptive statistics or transaction de-
tails. In order to help users and new bitcoin learners
can understand clearly about the mechanism of bit-
coin. We would like to visualize the communication
process between replicas.

There were many types of visualization tools
proposed for above purposes. Among them, time
series data were the main visualization data type for
blockchains data [7]–[13]. It is very straightforward
to monitor the health condition of blockchains by
observing the time series data because blockchains
is a complex time dependent system. The metrics to
monitor can be CPU, memory, network bandwidth
usage, system load and disk R/W data, etc.

II. RELATED WORK

A. Logging

The purpose of collecting loggings is to gather
the real time data from the blockchain. Most of
the data that we want to fetch rely on loggings to
export them. Therefore, without a doubt, loggings
are the most essential and important part for our
visualization framework. Yet, the original loggings
in ResilientDB are more complicated than we need.
To collect those data, we carefully review the code
we need on how ResilientDB logs those data.

B. Parameters Decision

The parameter decision will impact the way and
efficiency of manipulating the dataset which we
use to save the data exported from the blockchain.
The precision of timestamp, the format of times-
tamp, the compressing mechanism, and the tag for
each type of message will directly affect the chart
in the frontend. Although high precision and less
compression log can bring us meticulous charts, it
consumes more storage and CPU power, or larger

1



2

Fig. 1. Flowchart

latency, while rendering the page. Therefore, it will
be a trade-off between the user view and server
reliability.

C. Infrastructure Integration

Integrating our library and infrastructure setting
to the original codebase is a foreseeable hard work.
We will ingrain an exporter on each node, which
sends their log to the central unit. The central unit
acts as a data collector and a temporary storage.
Moreover, we will also set up a web visualization
interface as the monitor allowing users to track the
status of each component of the blockchain. Both
the central unit and the web visualization interface
are expected to be built over Docker. As a result,
because the intense infrastructure development is
involved in this project, the part of bringing up the
whole system will be an endeavor.

D. Original ResilientDB Dashboard

In ResilientDB, we know that it has its own
simple visualization implementation, a simple dash-
board. After further looking into how the original
dashboard works, we realize the current dashboard
does not work as we expect. It does not really
include the visualization part in the process of
installing the ResilientDB. That means if users want
to use a dashboard, they have to install a central

unit along with a visualization interface on their
own. It requests lots of external work for users to
do so. Therefore, in the project, we will build up a
solid way for the users who work on ResilientDB in
the future to easily install a visualization framework
with our project.

E. ResilientDB Backend

Even though the dashboard would not work right
now, we still trace the code to its backend to see
how it fetches data from the replica which is an
instance in the blockchain. We realized that in the
backend of the dashboard it uses some Shell script
to get the data it wants. It is not the usual means
of backend. Nonetheless, we still take some time to
trace down the code and make sure we got some
initial data that we needed for our visualization.

F. Replica IP table

Since we try to fetch data from the replica, it
is essential to understand where the data is from.
Then, we can ensure the data we get is from the
corresponding replica. Yet, the IP table that we get
is nothing but a list of IP addresses. Even though
we can check the addresses in the container, without
any identifier, we can not correspond to the replica,
and monitor the status right away. Therefore, while
constructing our central unit, we can also connect



3

the replica through the setting in the central unit,
then we don’t have to worry about the confusion of
the original IP table.

III. OUR APPROACH

In our approach, we leverage the benefits of
Docker [14]. Docker technology has been highly
used nowadays. We concatenate the replicas, the
central unit, and web visualization interface in the
docker network by their domain name. Since the
domain name settings are more readable compared
to IP settings, using Docker can also address the
current IP table problem.

Next, to be able to build new images that integrate
all applications we need for ResilientDB, we dive
into the source code of ResilentDB, and decide
which metrics of replicas are important and neces-
sary for visualization. Then, we capture these fea-
tures by logging them in the output file. On the other
hand, we introduce Prometheus [15] as our central
unit, which is an open-source systems monitoring
and alerting toolkit. We use the Prometheus server
to retrieve the logs from the output file and visualize
the statistics of replicas on Grafana [16] Web UI.
Also, we configure the alert manager to monitor
the status of replicas and notify the administrator
by email when errors occur. The Fig. 1 is the flow
chart of our system.

A. ResilientDB

S. Gupta et al. presented the Geo-Scale Byzantine
Fault-Tolerant consensus protocol (GeoBFT) [17]
to address the problem of geo-scale deployments
where many replicas spread across a large area
participate in consensus. The main challenge of geo-
scale blockchains is to distinguish between local
and global communication. Only by distinguishing
between these two communication types, can global
communication be minimized. GeoBFT performs a
topological-aware grouping of replicas into local
clusters so that it can minimize global commu-
nication. On the other hand, the paper introduces
a novel global sharing protocol that optimistically
performs minimal inter-cluster communication, still
being able to reliably detect communication failures.

The experiment results show that GeoBFT achieves
up-to-six times more throughput than existing BFT
protocols.

ResilientDB has originally provided a visualiza-
tion platform. However, we found that the way the
dashboard works is not available now. We then
found that in the backend of the dashboard, it
applies some shell scripts to get the data it needs as
shown in Fig. 3. Moreover, the dashboard acquires a
pre-established intra-logging server in the internet.
Nevertheless, the log server establishing scripts is
not existed in the original codebase. Therefore,
we find that an error occurs when people uses
logging system. Another problem is that the origi-
nal logging function posts logging data to the log
server, InfluxDB, using different shell scripts. The
dependency leads dashboard malfunctioning. To be
more specific, this approach highly couples with
the original log output format. Once the original
code has been changed, the log scripts need to be
adjusted accordingly. If we implement new function
in ResilientDB and want to see the logs of that
function, we have to add several log collectors
and post functions. It is an unusual way of back-
end engineering for monitoring. It humongously
hampers the future implementation, prolongs the
development cycle, and hinders the research on
ResilientDB. Therefore, we aim to improve this
system by building a visualization tool that makes
the service more visible and easily accessible.

B. Prometheus

Our Monitoring architecture aims to achieve
low dependency, high integration, and open for
future expansion. Because the monitoring is re-
lated to time series databases, log collectors, and
visualization, we take several existing open third
party time series databases into considering, in-
cluding InfluxDB [18], Prometheus, and Elastic-
search [19]. The Prometheus have robust commu-
nity, which gives the database long-term support
and comprehensive document. Therefore, we choose
Prometheus as our central unit which can provide
more scalability for future implementation. Also,
Prometheus is developed by Golang, which is highly



4

Fig. 2. Framework

Fig. 3. Component Dependency

efficient language and able to achieve low depen-
dency. More, Prometheus allows huge amount of
third party libraries to interact with it. While it is
compatible with many UIs, it comes with a default
UI which we can first test whether our Prometheus
server is working or not. In conclusion, Prometheus
is an ideal choice for us as a third-party library to
be the central unit. Prometheus is highly scalable as
a node exporter and inverts the current dependency
of visualization implementation in ResilientDB.

Prometheus is an open source monitoring system
developed by engineers at SoundCloud in 2012. In
2016, Prometheus was accepted into the Cloud Na-
tive Computing Foundation. The Prometheus mon-
itoring system includes a rich, multidimensional
data model, a concise and powerful query language

called PromQL, an efficient embedded timeseries
database, and over 150 integrations with third-party
systems.

With the help of Prometheus, one can quickly
locate the current application’s problems, thus
handling solutions immediately. The benefit of
Prometheus is that we can integrate with any system
and extract the part we want to see. For example,
when implementing GeoBFT, one can easily ob-
serve the network latency with specific metrics data
or discover the network throughput of the system.
Besides, if there exists an idle node in the network,
it would be found out in seconds by observing the
inbound/outbound rate of the instance.

C. Grafana

We use Grafana as our web visualization inter-
face. Grafana was written in Golan and first released
in 2014 by Torkel Ödegaard at Orbitz. Grafana
is an interactive visualization web application. It
demonstrates diagrams, charts, curves and graphs
on the web when it connects to data sources. In our
work, we use Prometheus as a monitoring solution
for storing time series data like metrics, and use
Grafana to visualize the data stored in Prometheus,
including all the statistics regarding the status of the
replicas in ResilientDB.

Grafana provides a handy dashboard to let users
organize the metrics data pulled from Prometheus



5

Fig. 4. Dockerfile Configuration

Fig. 5. Docker Status

with the highly customizing interface. For example,
we can compare the network throughput of each
replica to observe the data exchange between them.

IV. RESULTS

A. Environment Settings

The new architecture involves three parts, Docker,
Prometheus, and Grafana. For the integration part,
we create Dockerfile, docker-compose, and modify
the original ResilientDB-docker script. In Fig. 4, we
ingrain the node exporter with original ResilientDB
images and modify the Dockerfile. The new image
is named docker.io/resilientdb/res-machine with the
version number of 0.0.4, as shown in Fig. 6, allows
Prometheus to scrape data from each node. We bring
up all of the services by using docker-compose, as
shown in Fig. 7. We established the ResilientDB
essential services: replicas, clients, Prometheus, and
Grafana. All services join the same docker network,
resilientdb default. The network runs in bridge
mode and allows services to expose their ports.
We can access the docker containers via those
exposing ports. In Fig. 8 , we adjust the ResilientDB
script to prevent it from not creating a new docker-
compose file while starting the simulation. Besides,
the monotonous docker-compose uses the domain
name of the containers, improving readability and
simplifying the configuration.

B. Prometheus

In Figure 9 we set the basic information of
replicas in the YAML file for Prometheus to connect
to the instances. And the status of the Prometheus

Fig. 6. Docker Image

Fig. 7. Docker Compose

after executing the YAML is shown as Fig. 10.
We have already pulled the metrics data from each
replica, and we only take several data as examples
in our project demo. The data we retrieve is enough
for monitoring the health status of the whole system.
The Prometheus provides a basic UI dashboard as
shown in Fig. 11, but later we will further integrate
with Grafana with a more user-friendly interface.



6

Fig. 8. ResilientDB Shell Script

Fig. 9. Prometheus Configuration

Fig. 10. Prometheus UI

Fig. 11. Prometheus UI Dashboard

C. Grafana

On Grafana UI web, we can choose which data
source we would like to connect. In our case,
obviously, we choose Prometheus server as our data
sources as shown Fig. 15. We can show the status
of all replicas on the Grafana web UI as shown in
Fig. 12, including CPU, memory, partition usage.
Also, we can see the transmit and receive status
among replicas. If we are interested in one specific
replica, we can pull out its status, and monitor its
statistics in detail as shown in Fig. 13 and Fig. 14.
From these figures, we can see the time series values
of all monitored metrics. This feature is significant
especially when the network is unusual, and we
want to find which replica is abnormal.

V. FUTURE WORK

The current progress of this project has already
implemented the basic structure of the system, such
as retrieving metrics data from replicas and the
customizable visualized dashboard. Prometheus pro-
vides more than just extracting the data.

Besides, in the next step, we will implement
an alert manager to notify users if the system



7

Fig. 12. Grafana UI

Fig. 13. Grafana UI

encounters some issue in the future, thus resolving
the problems in a short time. Also, Grafana can
integrate with other related data sources with the
whole blockchain networks, such as the data from
different chains.

On the other hand, there is more work we can
do on ResilientDB. Now, the logs we extract from
ResilientDB are only information of each replicas
such as CPU and memory usage. In the next step,
we expect to store more information about the
state of the entire system, especially at which stage
it is in, including pre-commit, commit, and view
changes. If we can show the stages of ResilientDB,

it can help users learn more about the process and
health condition of each transaction.

Moreover, in our work, we manually write the
docker compose file and Prometheus YAML file.
However, it is not ideal for system integration.
Therefore, in the future, we would like to design a
shell script which is able to automatically generate
docker compose file and Prometheus YAML file.

VI. CONCLUSIONS

In this work, we build a visualization sys-
tem based on ResilentDB, which is the Geo-
Scale Byzantine Fault-Tolerant consensus proto-



8

Fig. 14. Grafana UI

Fig. 15. Data Source

col (GeoBFT) aiming to address the problem of
geo-scale deployments where many replicas spread
across a large area participate in consensus. Since
the original visualization platform of ResilientDB
has issues of components dependency, we construct
a new visualization system to provide users and
learners to understand the mechanisms and status of
replicas more easily. We built the Prometheus server
to pull all the statistics of replicas in ResilientDB.
Then, we build the Grafana user interface, and
let users decide which metrics they would like to
monitor. When users query the metrics, the Grafana
will pull the specific metrics from the Prometheus
server, and demonstrate the charts and curves on the
web UI. This work is very valuable for providing an
independent service to monitor the communication
process within a protocol. Moreover, our work has

high scalability. For those users and developers on
ResilientDB, it is costly-less for integrating our
project into the current ResilientDB. Our work can
not only monitor ResilientDB, but it can be used on
a variety of protocols.

REFERENCES

[1] “Bitbonkers.com,” https://bitbonkers.com/.
[2] “Bitcoin transaction visualization.com,” http://bitcoin.interaqt.

nl/.
[3] “Bitnodes.earn.com,” https://bitnodes.earn.com/.
[4] “Realtime bitcoin globe,” https://blocks.wizb.it/.
[5] “Blockchain.info,” https://blockchain.info/tree/114688199.
[6] “Elliptic.co,” https://www.elliptic.co/.
[7] A. Bogner, “Seeing is understanding: Anomaly detection in

blockchains with visualized features,” p. 5–8, 2017.
[8] C. Kinkeldey, J. Fekete, T. Blascheck, and P. Isenberg,

“Visualizing and analyzing entity activity on the bitcoin
network,” CoRR, vol. abs/1912.08101, 2019.

[9] H. Kuzuno and C. Karam, “Blockchain explorer: An analytical
process and investigation environment for bitcoin,” pp. 9–16,
2017.

[10] D. McGinn, D. Birch, D. Akroyd, M. Molina-Solana, Y. Guo,
and W. Knottenbelt, “Visualizing dynamic bitcoin transaction
patterns,” Big Data, vol. 4, pp. 109–119, 06 2016.

[11] D. McGinn, D. McIlwraith, and Y. Guo, “Toward open
data blockchain analytics: A bitcoin perspective,” CoRR, vol.
abs/1802.07523, 2018.

[12] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko,
D. McCoy, G. M. Voelker, and S. Savage, “A fistful of
bitcoins: Characterizing payments among men with no names,”
Commun. ACM, vol. 59, no. 4, p. 86–93, mar 2016.

[13] L. Norbutas, “Offline constraints in online drug marketplaces:
An exploratory analysis of a cryptomarket trade network.” The
International journal on drug policy, vol. 56, pp. 92–100, 2018.



9

[14] “Docker,” https://www.docker.com/.
[15] “Prometheus,” https://prometheus.io.
[16] “Grafana,” https://github.com/grafana/grafana.
[17] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi,

“Resilientdb: Global scale resilient blockchain fabric,” CoRR,
vol. abs/2002.00160, 2020.

[18] “Influxdb,” https://www.influxdata.com/.
[19] “Elasticsearch,” https://www.elastic.co/.


