
Final Report - Implementation of RingBFT
Zaoyi Zheng

University of California, Davis
royzheng@ucdavis.edu

Xiaoxi Yu
University of California, Davis

xxiyu@ucdavis.edu

Fuming Fu
University of California, Davis

fufu@ucdavis.edu

Jiangnan Chen
University of California, Davis

jnchen@ucdavis.edu

Haochen Yang
University of California, Davis

yhcyang@ucdavis.edu

Weijia Wang
University of California, Davis

wjawang@ucdavis.edu

ABSTRACT
Federated data management has been widely used in various sci-
entific data management applications[10]. Due to the increasing
number of byzantine attacks[1], Byzantine Fault-Tolerant (BFT) con-
sensus protocols have become essential in distributed databases and
related fields such as blockchain. When client transactions require
access to a single-shard, the traditional BFT protocols like PBFT[3],
are efficient on sharded-replicated blockchains. However, in many
situations, cross-shard transactions are required[4, 9], and when
client transactions require access to a cross-shard, the performance
will face degradation.

This paper[11] presents a novel meta-BFT protocol for sharded
blockchains, RingBFT, which can significantly reduce the costs
with cross-shard transactions while supporting large scale shards,
improving throughput performance, and guaranteeing safety and
liveliness. Our goal for the final project is to implement and evaluate
the proposed protocol, and compare the results and performance
demonstrated in the paper on the ResilientDB platform[5].

1 INTRODUCTION
1.1 Background of RingBFT
In the late 90s, Practical Byzantine Fault Tolerance(PBFT) consen-
sus was introduced by [2], which is the first protocol that survives
Byzantine faults in asynchronous network. Based on PBFT consen-
sus, the original Byzantine gathering problem is greatly improved
from exponential to polynomial time complexity. After PBFT con-
sensus is built, a lot of advanced protocols are gradually presented.
For instance, GeoBFT, a geo-scale consensus protocol, is presented
to deal with geo-scale deployments in which many replicas spread
across a geographically large area participate in consensus [6]. At
its core, it adopts PBFT consensus in each cluster to help repli-
cas reach an agreement at local level as shown in the following
figure1[7].

Similarly, PBFT also plays a pivotal role in RingBFT [12], whose
local consensus is also built on PBFT. With respect to RingBFT, it
aims to tackle issues in federated database management. As the
recent surge in federated data-management applications, it has
brought forth concerns about the security of underlying data and
the consistency of replicas in the presence of malicious attacks.
This leads to the rise of sharded replicated blockchains. However,
the existing BFT protocols for these sharded blockchains are effi-
cient if client transactions require access to a single-shard, but face

1Modified from ResilientDB: Global Scale Resilient Blockchain Fabric

Figure 1: GeoBFT consensus protocol schematic [7]

performance degradation if there is a cross-shard transaction that
requires access to multiple shards.

Tomitigate this issue, a strategy is to employ the sharded-replicated
paradigm. In a sharded-replicated database, the data is distributed
across a set of shards where each shard manages a unique partition
of the data that may be much less than the whole data. Furthermore,
each shard replicates its partition of data at local to ensure avail-
ability under failures. If each transaction accesses only one shard,
these sharded systems can fetch high throughput as consensus is
restricted to a subset of replicas. Nevertheless, a normal transaction
is more than a single-shard transaction. Cross-shard transactions
are more common in practice and is of great importance to be
considered. To handle cross-shard transaction efficently, [12] pro-
posed RingBFT that significantly reduces the costs associated with
cross-shard transaction. RingBFT guarantees consensus for each
cross-shard transaction in at most two rotations around the ring.
In RingBFT, each shard may participate in concurrent rotational
flows, where each rotation maps to the processing of a transaction.
For each cross-shard transaction, RingBFT follows the principle
of process, forward, and re-transmit. This implies that each shard
performs consensus on the transaction and forwards it to the next
shard. This flow continues until each shard is aware of the fate
of the transaction. However, the real challenge with cross-shard
transactions is managing conflicts and preventing deadlocks, which
RingBFT achieves by requiring cross-shard transactions to travel in
ring order. Despite all of this, RingBFT ensures that communications
between the shards are linear to the number of shards. This mini-
malistic thought has allowed RingBFT to achieve unprecedented
gains in throughput and has allowed us to scale BFT protocols to
nearly 500 nodes.

In addition, RingBFT also resembles GeoBFT to some degree. It is
clear that replicas will all be grouped either in GeoBFT or RingBFT.

Zaoyi Zheng, Xiaoxi Yu, Fuming Fu, Jiangnan Chen, Haochen Yang, and Weijia Wang

And the only difference is the group of replicas in GeoBFT is termed
as clusters while it is called shards in RingBFT. Meanwhile, GeoBFT
is designed for excellent scalability to tackle geographically large
area participate in consensus. Hence, it inspires us to develop Ring-
BFT from GeoBFT after taking their common ground into account.
As shown below, To be specific, RingBFT can be regarded as a ad-
vanced version of GeoBFT. First, It requires that a transaction is
travelled in ring order. Second, it introduces lock mechanism to
handle conflicts and prevent deadlocks. Finally, a linear commu-
nication beweeen shards is achieved in RingBFT. Therefore, these
improvements gives us a hint to implement RingBFT protocol.

Figure 2: Similarity between GeoBFT and RingBFT pro-
tocol(Modified from ResilientDB: Global Scale Resilient
Blockchain Fabric [7])

1.2 Market Opportunity of RingBFT
As stepping into the era of information, the rapid increase in the
volume of data opens up new possibilities for enterprises. Tradi-
tionally, a user can only index a single data source at a time. But
federated database, which could be implemented with RingBFT
protocol, improves the likelihood of users finding what they need
on the first attempt by including more data sources.

In the field of business, the ability to increase customer engage-
ment and satisfaction rates is regarded as the ace in the hole, which
has been an impediment for a company to progress. However, this
can be easily resolved by employing a federated database that pro-
vides the most relevant information in an intuitive format and even,
at times, surfacing content a user did not even know. Instead of rely-
ing on a traditional single database, visitors can reach their desired
destination with fewer clicks through the federated database. As
a result, users stay on your site longer, rather than leaving due to
dissatisfaction. This ultimately increases the chances of converting
your visitor into a customer and increases customer stickiness. In
this regard, this exercise would be much more helpful especially
for e-commerce businesses since they face more competitions with
their counterparts in terms of customer share.

However, the security and privacy concerns are major obstacles
for a federated database due to the fact that several parties main-
tain a common database in a federated database. The leakage of
private data can lead to serious issues beyond the financial loss of
providers[8]. Thus, to deal with this issue, RingBFT is proposed, a
meta-BFT protocol for sharded blockchains, to necessitate all those
involved parties to reach a consensus on each transaction. As a

result, it will eventually maximize the benefit of federated database
usage by utilizing globally-distributed nodes to guard data’s secu-
rity and increasing customer stickiness with improved throughput
by the protocol.

2 ACTIVITIES
2.1 Client
Clients are the generators of transaction requests. There are many
existing protocols that aim to deal with the single-shard transaction.
However, when clients require access to multiple shards, existing
BFT protocols are facing performance degradation. The Ring-BFT
protocol aims to reach consensus more efficiently when facing
cross-shard transactions.

Figure 3: Workflow of Client

In the cross-shard scenario, the client has the following activities:
(1) When a client c wants to process a cross-shard transaction

𝑇ℑ, it creates a <𝑇ℑ>𝐶 message and sends it to the primary
of the first shard 𝑆 in ring order. As part of this transaction,
client c specifies the information regarding all the involved
shards, such as their identifiers and the necessary read-
write sets of each shard.

(2) After client c sends out the request of transaction, it awaits
receipt of response messages from 𝑓 + 1 replicas of shard 𝑆 .

(3) When client c receives enough identical responses, it consid-
ers <𝑇ℑ>𝐶 executed, with result r, as the k-th transaction.

(4) The client cannotwait indefinitely to receive valid responses,
so each client c will start a timer when it sends its transac-
tion to the primary of shard S. If the timer timeouts prior to
c receiving at least 𝑓 + 1 identical responses, it broadcasts
<𝑇ℑ>𝐶 to all the replicas of shard 𝑆 .

Due to faulty primary or unreliable networks, such transactions
may be lost in the middle. Instead of waiting indefinitely, the client
will start a timer when it sends the transactions to primary in the
shard. If the timer reaches timeout before the client receives 𝑓 + 1
identical reply message, the client will re-transmit the transactions
to the primary.

Final Report - Implementation of RingBFT

2.2 Primary
Primary is a special kind of Replicas. Primary in the RingBFT is
decentralized in that it is not responsible for coordinating all con-
sensus decisions, as such a centralized design limits the throughput
to the outgoing global bandwidth and latency of this single replica
or cluster[7].

Figure 4: Workflow of Primary

Generally speaking, primary has the following activities:
(1) The primary will check if the message is well-formed at the

reception of the client request and confirm it is the initiator
of the shards or forwards it to the initiator.

(2) The sequence number will be assigned to the transaction,
the digest will be calculated to reduce the cost of commu-
nication and the primary replicates the transaction to all
local replicas using the PBFT.

(3) At the end of local replication, the primary can produce
a cluster certificate for the transaction. These are shared
with other clusters via local communication. However, the
transaction cannot be executed unless this transaction is
simple.

(4) If it has completed one complete ring order, then the last
shard of transaction involved shards in ring order will in-
form the initiator to execute the transaction, release the
lock of data and reply to the client. The primary will com-
municate with local replicas to ensure the transaction is
executed in every replica.

In the implementation, the primary’s task is to open the port and
listen to the message from clients, replicas or the primary from
other shards, choosing one of the activities mentioned above.

2.3 Replica
With respect to replicas, there are two scenarios are considered:(1)
Single-shard consensus (2) Cross-shard consensus. In addition, we’ll
talk about the encivil executions in the end.

2.3.1 Single-shard consensus.

(1) Pre-prepare After receiving the Pre-prepare message from
its primary p, a replica R will first check if the message

is well-formed. The Pre-prepare message includes: (1) se-
quence number k that specifies the order for this transac-
tion, and (2) digest △ = H(〈T〉c) of the client transaction
which will be used in future communication to reduce data
communicated across the network.

(2) Prepare In Prepare phase, a replica R will send Prepare(△ ,
k) to all the replicas of S.

(3) CommitWhen R receives identical Prepare messages (and
are alsowell-formed) from at least nf replicas of S, it achieves
a weak guarantee that the majority of non-faulty replicas
have also agreed to support p’s order for m. Hence, it marks
this request as prepared, creates a Commit(△ , k) message,
and broadcasts this message.

(4) ReplyWhenR receives identical Commitmessages (and are
also well-formed) from at least nf replicas of S, it achieves
a strong guarantee that the majority of non-faulty replicas
have also prepared this request. Hence, it executes trans-
action T𝑇 , after (𝑘 − 1)𝑡ℎ all the transactions have been
executed and replies to the client c.

Figure 5: Single-shard Consensus

2.3.2 Cross-shard consensus.

(1) Pre-prepareWhen a replica R ∈ S receives the Pre-prepare
message from 𝑃𝑆 , it checks if the request is well-formed.
If this is the case and if R has not agreed to support any
other request from 𝑃𝑆 as the 𝑘𝑡ℎ request, then it broadcasts
a Prepare message in its shard S

(2) PrepareWhen a replica R receives identical Prepare mes-
sages from nf distinct replicas, it gets an assurance that a
majority of non-faulty replicas are supporting this request.
At this point, each replica r broadcasts a Commit message
to all the replicas in S.Once a transaction passes this phase,
the replica R marks it prepared.

(3) Commit and Data locking When a replica R receives
well-formed identical Commit messages from nf distinct
replicas in S, it checks if it also prepared this transaction
at the same sequence number. If this is the case, RingBFT
requires each replica r to lock all the read-write sets that
transaction T needs to access in shard S.

Zaoyi Zheng, Xiaoxi Yu, Fuming Fu, Jiangnan Chen, Haochen Yang, and Weijia Wang

(4) Foward to next shard Once a replica R in S locks the data
corresponding to CST T, it sends a Forward message to only
one replica q of the next shard in ring order.

Figure 6: Cross-shard Consensus

2.4 Uncivil Executions
In order to achieve liveness through periods of synchrony, RingBFT
adds 3 timers(local timer, remote timer, and transmit timer) in each
replica.

(1) If replica does not receive 𝑛𝑓 identical Commit messages
from distinct replicas, or primary fails to propose a request
from the client, both situations will cause local timer time-
outs and will invoke local view change protocol.

(2) If malicious primary causes in-the-dark attack, RingBFT
will ensure the progress of such replicas with the help of
Checkpoint message.

(3) If there’s no network communication between shards, it
will trigger the timeout of transmit timers in the replicas,
which will cause the retransmission of Forward messages.

(4) If only partial network works or primary in the previous
shard is byzantine, it will trigger timeout of remote timers
in replicas. Affected replicas will send ViewChangemessage
to other replicas in the same shard.

3 IMPLEMENTATION ON RESILIENT DB
RingBFT aims to scale permissioned blockchains to hundreds of
replicas through efficient sharding. To argue the benefits of our
RingBFT protocol, we need to first implement it in a permissioned
blockchain fabric. For this purpose, we employed a state-of-the-art
permissioned blockchain fabric, ResilientDB. ResilientDB offers an
optimal system-centric design that eases implementing novel BFT
consensus protocols. ResilientDB presents an architecture that al-
lows even classical protocols like PBFT to achieve high throughputs
and low latencies.

𝑵𝒆𝒕𝒘𝒐𝒓𝒌𝑳𝒂𝒚𝒆𝒓 : ResilientDB provides a network layer to man-
age communication among clients and replicas. The network layer
provides TCP/IP capabilities through Nanomsg-NG to communi-
cate messages. To facilitate uninterrupted processing of millions

of messages, at each replica, ResilientDB offers multiple input and
output threads to communicate with the network.

Figure 7: The parallel-pipelined architecture provided by
ResilientDB fabric for efficiently implementing RingBFT[7].

𝑷 𝒊𝒑𝒆𝒍 𝒊𝒏𝒆𝒅𝑪𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔 : Once a message is received from the net-
work, the key challenge is to process it efficiently. If all the ensuing
consensus tasks are performed sequentially, the resulting system
output would be abysmally low. Moreover, such a system would
be unable to utilize the available computational and network capa-
bilities. Hence, ResilientDB associates with each replica a parallel
pipelined architecture, which we illustrate in Figure 7.

𝑩𝒍𝒐𝒄𝒌𝒄𝒉𝒂𝒊𝒏 : To securely record each successfully replicated
transaction, we also implement an immutable ledger–blockchain.
For systems running fully-replicated BFT consensus protocols like
PBFT and Zyzzyva, blockchain is maintained as a single linked-list
of all transactionswhere each replica stores a copy of the blockchain.
However, in the case of sharding protocols like RingBFT, each shard
maintains its own blockchain. As a result, no single shard can
provide a complete state of all the transactions. Hence, we refer to
the ledger maintained at each shard as a partial-blockchain.

3.1 Redesign
We have added two classes inherited from the Message class:

• RingBFTForwardMessage
• RingBFTExecuteMessage

RingBFTForwardMessage includes variables such as forwar-
dOrder that indicates the indexes of shards in forwarding order,
executionOrder that indicates the indexes of shards in execution
order. It also has a method get_next_node_id(), which will return
the id of the next node in forwarding order.

1 class RingBFTForwardMessage : public Message
2 {
3 public :
4 ...
5 deque<uint64_t> executeOrder;
6 deque<uint64_t> forwardOrder;
7 // node id of next shard to forward
8 uint64_t get_next_node_id(deque<uint64_t> ringOrder ,
9 deque<uint64_t> executeOrder);
10 }

1 // get next node id in forwarding order
2 uint64_t RingBFTForwardMessage :: get_next_node_id(

Final Report - Implementation of RingBFT

3 deque<uint64_t> ringOrder , deque<uint64_t> executeOrder){
4 uint64_t next_shard = ringOrder . front ();
5 ringOrder .pop_front ();
6 if (ringOrder .empty ()){
7 executeOrder.push_front(next_shard);
8 } else {
9 executeOrder.push_back(next_shard);
10 }
11 return next_shard;
12 }

We also defined a RingBFTExecuteMessage class, one of its vari-
ables is executeOrder which indicates the indexes of shards in
execution order, the method get_next_node_id() will return the
node id of next shard to forward in execution order.

1 class RingBFTExecuteMessage : public Message
2 {
3 public :
4 ...
5 RingBFTExecuteMessage(deque<uint64_t> eo){
6 this . executeOrder = eo;
7 };
8
9 // indexes of shards in execution order
10 deque<uint64_t> executeOrder;
11
12 // node id of next shard to forward
13 uint64_t get_next_node_id(deque<uint64_t> executeOrder);
14 }

1 // get next node id in execution order
2 uint64_t RingBFTExecuteMessage::get_next_node_id
3 (deque<uint64_t> executeOrder){
4 uint64_t next_executeion_node_id = executeOrder. front ();
5 executeOrder.pop_front ();
6 return next_executeion_node_id;
7 }

The transaction is redesigned that it needs to be put in Spin-
LockMap so as to enable every node of the shard to lock and unlock
data fragments. Client threads are supposed to sparse transactions
into specific operations which is stored in SpinLockMap, where
every possible operation is stored as an entry in the map. In a multi-
thread environment, one entry of the map could be executed by
only one worker thread and it would be released until that working
thread finishes the execution.

The worker thread is redesigned that RingBFT requires nodes to
perform different operations at the first and last rounds. Receive
the message from the work queue, a node performs different tasks
relative to the message type. The fraction of code is shown below:

1 void WorkerThread::process(Message ∗msg)
2 {
3 RC rc __attribute__ ((unused));
4
5 switch (msg−>get_rtype())
6 {

7 case KEYEX:
8 rc = process_key_exchange(msg);
9 break;
10 case CL_BATCH:
11 rc = process_client_batch (msg);
12 break;
13 case BATCH_REQ:
14 rc = process_batch (msg);
15 break;
16 case PBFT_CHKPT_MSG:
17 rc = process_pbft_chkpt_msg(msg);
18 break;
19 case RBFT_LAST_ROUND_MSG:
20 send_last_round_execute_msg(msg);
21 case EXECUTE_MSG:
22 rc = process_execute_msg(msg);
23 break;
24 ...
25 }

In the first round execution, local nodes will perform PBFT without
executing the transaction to make consensus, lock the correspond-
ing data fragment, check if it is the last shard of involved shards
and decide whether to perform the Last Round Execution or not.

In the last Round Execution, local nodes will perform the trans-
action, unlock the corresponding data fragment and reply to the
client. The fraction of code is shown below:

1 RingBFTExecuteMessage rbft_msg
2 = (RingBFTExecuteMessage ∗)msg;
3 if (msg−>rtype != RBFT_LAST_ROUND_MSG)
4 {
5 // lock corresponding datafragment
6 dependentSRC[rbft_msg−>executeOrder.front ()]. lock ();
7 // If the last shard in transaction − involved shards
8 if (rbft_msg−>executeOrder.size () == 1)
9 {
10 // The id of initiator is set to 0
11 vector<uint64_t> dest ;
12 dest .push_back((uint64_t)0);
13 lastMsg = Message::
14 create_message(RBFT_LAST_ROUND_MSG);
15 msg_queue.enqueue(get_thd_id(), lastMsg , dest);
16 dest . clear ();
17 }
18 }
19 else
20 {
21 // execute
22 tman−>run_txn_print(msg);
23 // reply to client
24 Message ∗rsp = Message::create_message(CL_RSP);
25 ClientResponseMessage ∗crsp
26 = (ClientResponseMessage ∗)rsp ;
27 crsp−>init ();
28 crsp−>copy_from_txn(txn_man);
29 vector<uint64_t> dest ;

Zaoyi Zheng, Xiaoxi Yu, Fuming Fu, Jiangnan Chen, Haochen Yang, and Weijia Wang

30 dest .push_back(txn_man−>client_id);
31 msg_queue.enqueue(get_thd_id(), crsp , dest);
32 dest . clear ();
33 // unlock corresponding datafragment
34 dependentSRC[rbft_msg−>executeOrder.front()]
35 . unlock ();
36 }

3.2 Global Sharing
The main difference between RingBFT and GeoBFT In GeoBFT, the
primary sends messages to replicas of other shards, and it sends
f+1 messages, while in RingBFT, both replica and primary send one
message to the next shard with the same id. This gives the basic
idea to modify the RingBFT based on the GeoBFT, and here are the
main steps in global sharing:

(1) For cross-shard transactions, the number of nodes should
be more than that in a cluster. Otherwise, it is a single-
shard transaction instead of a cross-shard transaction. So
we need to check if it is a cross-shard transaction before
the following steps.

(2) Create a message and coerce it.
(3) Register in transaction manager.
(4) Traverse all nodes and for every node check for these three

conditions:
(a) Not in the same cluster.
(b) Have the same id.
(c) In adjacent shards, which means in ring order.

(5) If the node satisfies all the three conditions above, add it to
the message queue then clear the destination vector.

1 # if RING
2 // Forward message(Global sharing in RingBFT)
3 // Not for Single shard
4 if (g_node_cnt > ringbft_cluster_size)
5
6 {
7 RingBFTForwardMessage ∗rbm =
8 (RingBFTForwardMessage ∗)
9 Message::create_message(txn_man, RINGBFT_MSG);
10 rbm−>txn_id = txn_man−>get_txn_id();
11
12 vector<uint64_t> dest ;
13 for (uint64_t i = 0; i < g_node_cnt; i++)
14 {
15 // Not in the same shard and having the same id
16 if (! is_in_same_cluster (g_node_id, i) &&
17 i % ringbft_cluster_size == g_node_id %
18 ringbft_cluster_size)
19 {
20 dest .push_back(i);
21 break;
22 }
23 }
24
25 msg_queue.enqueue(get_thd_id(), rbm, dest);
26 dest . clear ();

27 }
28 #endif

3.3 Execution
To visualize the process of RingBFT, printouts are used to identify
every step of the protocol:

Figure 8: RBFT Printouts

4 IMPLEMENTATION IN GO
Because of the difficulty of running and debugging code on Resilient
DB, we try to implement the demo in Go.

4.1 PBFT in Go
PBFT is greatly used in nowadays real applications. Just for simplic-
ity in our implementation of RingBFT, we choose a PBFT project2
in Github and continue writing RingBFT code above it.

Here are some implementation details for PBFT:
(1) Communication:Messages transmission is achieved by

http server with the help of net/http library in Go. In each
stage of PBFT, each node only needs to send a http request
to the target node.

(2) Node: Each node maintains its own MsgEntrance channel
to handle the incoming messages from other nodes. After
decoding the http request and encoded messages, nodes
get messages from the MsgDelivery channel and perform
different tasks based on the type of the message.

(3) State: Each node has its own current state to record the
current stage and view id, to remember the last sequence
ID and to log different messages. All jobs are implemented
as a method of a state instance.

4.2 Implementation Details
4.2.1 Ring Order. Ring order is hard coded in the http request
message. A representative request message is in the following:

1 {
2 " clientID " : "ahnhwi",
3 " operation " : "GetMyName",
4 "timestamp" :859381532,
5 "RingOrder" :[1, 2]
6 }

2https://github.com/bigpicturelabs/simple_pbft

Final Report - Implementation of RingBFT

In this example, the global sharing messages are sent from shard 1
to shard 2.

4.2.2 Global Sharing. Finishing global sharing stage in linear time
is a great advantage for RingBFT. When try to send global sharing
messages, nodes should check 3 conditions:

(1) Sender and receiver have the same ID
(2) Sender and receiver not in the same shard

The ID, in our implementation, is the node index in its shard.
Here’s the implementation for that:

1 ...
2 // Get the shard num of the source
3 re := regexp.MustCompile(`[0−9]+`)
4 shardNumFrom, shardNumTo := int(re.Find([]byte(node.NodeID))[0])

−48, 0
5
6 // Get the shard num of the target
7 for index , ringOrder := range msg.ReqMsg.RingOrder {
8 if ringOrder == shardNumFrom {
9 if index != len (msg.ReqMsg.RingOrder)−1 {
10 shardNumTo = msg.ReqMsg.RingOrder[(index

+1)%len(msg.ReqMsg.RingOrder)]
11 } else {
12 node.CurrentState .CurrentStage = consensus

.Executed
13 shardNumTo = msg.ReqMsg.RingOrder[(index

+1)%len(msg.ReqMsg.RingOrder)]
14 }
15 }
16 }
17 ...

All nodes ID are pre-defined before the execution and follow some
rules to distinguish itself from the others. Thus, in order to find the
target node in global sharing stage, regular expression is applied to
each node ID.

4.2.3 Local Sharing. Local sharing stage is much similar to prepre-
pare stage in PBFT. Instead of sending messages from only the
primary, all nodes should forward the global sharing messages to
other nodes in the same shard. However, only the primary needs
to respond it if it receives sufficient forward messages.

Here’s a snippet of the code:
For primary:

1 node.CurrentState .MsgLogs.GlobalForwardMsgs[msg.CommitMsg.
NodeID] = msg

2 if len (node.CurrentState .MsgLogs.GlobalForwardMsgs) >= 2∗f
{

3 node.CurrentState .CurrentStage = consensus. Idle
4 prePrepareMsg, err := node.CurrentState .

StartConsensus(msg.ReqMsg)
5 if err != nil {
6 return err
7 }
8
9 node.CurrentState .MsgLogs.ReqMsg = msg.ReqMsg
10 node.Broadcast(prePrepareMsg, " / preprepare ")
11 LogStage("Pre−prepare" , true)
12 return nil
13 }

4.2.4 Automated Testing. In order to test the RingBFT, our team
also writes a automated testing script on speed up our testing
process. With the help of Tmux, bash script can run each node in a
seperate Tmux window without manually configuring.

4.3 Results
Here’s the result for our project:

Figure 9: Result of shard 1

Figure 10: Result of shard 2

4.4 Further work
Due to the limited time budget, here list some parts that not imple-
mented in our project.

(1) Digital Signature: For simplicity, our team use common
hash function instead of the digital signature in global shar-
ing.

(2) Unstable execution: There are some conflicts between
goroutines(message dispatcher and message delivery). In
some cases, the consensus will be stuck in a stage without
a response.

(3) Client implementation: For now, we only imitate the
behaviour of client by sending HTTP request through curl.
Next, we will try to add client nodes in our system.

Zaoyi Zheng, Xiaoxi Yu, Fuming Fu, Jiangnan Chen, Haochen Yang, and Weijia Wang

REFERENCES
[1] Y. Amir, B. Coan, J. Kirsch, and J. Lane. 2008. Byzantine replication under attack.

(2008), 197–206.
[2] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.

In Proceedings of the Third Symposium on Operating Systems Design and Imple-
mentation (New Orleans, Louisiana, USA) (OSDI ’99). USENIX Association, USA,
173–186.

[3] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In
OSDI, Vol. 99. 173–186.

[4] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[5] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020. Re-
silientdb: Global scale resilient blockchain fabric. arXiv preprint arXiv:2002.00160
(2020).

[6] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proc. VLDB Endow. 13, 6

(feb 2020), 868–883. https://doi.org/10.14778/3380750.3380757
[7] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.

ResilientDB: Global Scale Resilient Blockchain Fabric. 13, 6 (2020), 868–883.
[8] Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang.

2019. Blockchain and federated learning for privacy-preserved data sharing in
industrial IoT. IEEE Transactions on Industrial Informatics 16, 6 (2019), 4177–4186.

[9] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2016. The challenges of
global-scale data management. In Proceedings of the 2016 International Conference
on Management of Data. 2223–2227.

[10] Peng Peng and Lei Zou. 2019. Survey on Federated RDF Systems. Frontiers of
Data and Domputing 1, 1 (2019), 73–81.

[11] Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv Krishnan, and Mohammad
Sadoghi. 2021. RingBFT: Resilient Consensus over Sharded Ring Topology. arXiv
preprint arXiv:2107.13047 (2021).

[12] Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv Krishnan, and Mohammad
Sadoghi. 2021. RingBFT: Resilient Consensus over Sharded Ring Topology. ArXiv
abs/2107.13047 (2021).

https://doi.org/10.14778/3380750.3380757

	Abstract
	1 Introduction
	1.1 Background of RingBFT
	1.2 Market Opportunity of RingBFT

	2 Activities
	2.1 Client
	2.2 Primary
	2.3 Replica
	2.4 Uncivil Executions

	3 Implementation on Resilient DB
	3.1 Redesign
	3.2 Global Sharing
	3.3 Execution

	4 Implementation in Go
	4.1 PBFT in Go
	4.2 Implementation Details
	4.3 Results
	4.4 Further work

	References

